// Copyright 2022 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package loong64 import ( "cmd/internal/objabi" "cmd/internal/sys" "cmd/link/internal/ld" "cmd/link/internal/loader" "cmd/link/internal/sym" "debug/elf" "fmt" "log" ) func gentext(ctxt *ld.Link, ldr *loader.Loader) { initfunc, addmoduledata := ld.PrepareAddmoduledata(ctxt) if initfunc == nil { return } o := func(op uint32) { initfunc.AddUint32(ctxt.Arch, op) } // Emit the following function: // // local.dso_init: // la.pcrel $a0, local.moduledata // b runtime.addmoduledata // 0000000000000000 : // 0: 1a000004 pcalau12i $a0, 0 // 0: R_LARCH_PCALA_HI20 local.moduledata o(0x1a000004) rel, _ := initfunc.AddRel(objabi.R_LOONG64_ADDR_HI) rel.SetOff(0) rel.SetSiz(4) rel.SetSym(ctxt.Moduledata) // 4: 02c00084 addi.d $a0, $a0, 0 // 4: R_LARCH_PCALA_LO12 local.moduledata o(0x02c00084) rel2, _ := initfunc.AddRel(objabi.R_LOONG64_ADDR_LO) rel2.SetOff(4) rel2.SetSiz(4) rel2.SetSym(ctxt.Moduledata) // 8: 50000000 b 0 // 8: R_LARCH_B26 runtime.addmoduledata o(0x50000000) rel3, _ := initfunc.AddRel(objabi.R_CALLLOONG64) rel3.SetOff(8) rel3.SetSiz(4) rel3.SetSym(addmoduledata) } func adddynrel(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, s loader.Sym, r loader.Reloc, rIdx int) bool { targ := r.Sym() var targType sym.SymKind if targ != 0 { targType = ldr.SymType(targ) } switch r.Type() { default: if r.Type() >= objabi.ElfRelocOffset { ldr.Errorf(s, "adddynrel: unexpected reloction type %d (%s)", r.Type(), sym.RelocName(target.Arch, r.Type())) return false } case objabi.ElfRelocOffset + objabi.RelocType(elf.R_LARCH_64): if targType == sym.SDYNIMPORT { ldr.Errorf(s, "unexpected R_LARCH_64 relocation for dynamic symbol %s", ldr.SymName(targ)) } su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_ADDR) if target.IsPIE() && target.IsInternal() { // For internal linking PIE, this R_ADDR relocation cannot // be resolved statically. We need to generate a dynamic // relocation. Let the code below handle it. break } return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_LARCH_B26): if targType == sym.SDYNIMPORT { addpltsym(target, ldr, syms, targ) su := ldr.MakeSymbolUpdater(s) su.SetRelocSym(rIdx, syms.PLT) su.SetRelocAdd(rIdx, r.Add()+int64(ldr.SymPlt(targ))) } if targType == 0 || targType == sym.SXREF { ldr.Errorf(s, "unknown symbol %s in callloong64", ldr.SymName(targ)) } su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_CALLLOONG64) return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_LARCH_GOT_PC_HI20), objabi.ElfRelocOffset + objabi.RelocType(elf.R_LARCH_GOT_PC_LO12): if targType != sym.SDYNIMPORT { // TODO: turn LDR of GOT entry into ADR of symbol itself } ld.AddGotSym(target, ldr, syms, targ, uint32(elf.R_LARCH_64)) su := ldr.MakeSymbolUpdater(s) if r.Type() == objabi.ElfRelocOffset+objabi.RelocType(elf.R_LARCH_GOT_PC_HI20) { su.SetRelocType(rIdx, objabi.R_LOONG64_ADDR_HI) } else { su.SetRelocType(rIdx, objabi.R_LOONG64_ADDR_LO) } su.SetRelocSym(rIdx, syms.GOT) su.SetRelocAdd(rIdx, r.Add()+int64(ldr.SymGot(targ))) return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_LARCH_PCALA_HI20), objabi.ElfRelocOffset + objabi.RelocType(elf.R_LARCH_PCALA_LO12): if targType == sym.SDYNIMPORT { ldr.Errorf(s, "unexpected relocation for dynamic symbol %s", ldr.SymName(targ)) } if targType == 0 || targType == sym.SXREF { ldr.Errorf(s, "unknown symbol %s", ldr.SymName(targ)) } su := ldr.MakeSymbolUpdater(s) if r.Type() == objabi.ElfRelocOffset+objabi.RelocType(elf.R_LARCH_PCALA_HI20) { su.SetRelocType(rIdx, objabi.R_LOONG64_ADDR_HI) } else { su.SetRelocType(rIdx, objabi.R_LOONG64_ADDR_LO) } return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_LARCH_ADD64), objabi.ElfRelocOffset + objabi.RelocType(elf.R_LARCH_SUB64): su := ldr.MakeSymbolUpdater(s) if r.Type() == objabi.ElfRelocOffset+objabi.RelocType(elf.R_LARCH_ADD64) { su.SetRelocType(rIdx, objabi.R_LOONG64_ADD64) } else { su.SetRelocType(rIdx, objabi.R_LOONG64_SUB64) } return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_LARCH_B16), objabi.ElfRelocOffset + objabi.RelocType(elf.R_LARCH_B21): if targType == sym.SDYNIMPORT { addpltsym(target, ldr, syms, targ) su := ldr.MakeSymbolUpdater(s) su.SetRelocSym(rIdx, syms.PLT) su.SetRelocAdd(rIdx, r.Add()+int64(ldr.SymPlt(targ))) } if targType == 0 || targType == sym.SXREF { ldr.Errorf(s, "unknown symbol %s in R_JMPxxLOONG64", ldr.SymName(targ)) } su := ldr.MakeSymbolUpdater(s) if r.Type() == objabi.ElfRelocOffset+objabi.RelocType(elf.R_LARCH_B16) { su.SetRelocType(rIdx, objabi.R_JMP16LOONG64) } else { su.SetRelocType(rIdx, objabi.R_JMP21LOONG64) } return true } relocs := ldr.Relocs(s) r = relocs.At(rIdx) switch r.Type() { case objabi.R_CALLLOONG64: if targType != sym.SDYNIMPORT { return true } if target.IsExternal() { return true } // Internal linking. if r.Add() != 0 { ldr.Errorf(s, "PLT call with no-zero addend (%v)", r.Add()) } // Build a PLT entry and change the relocation target to that entry. addpltsym(target, ldr, syms, targ) su := ldr.MakeSymbolUpdater(s) su.SetRelocSym(rIdx, syms.PLT) su.SetRelocAdd(rIdx, int64(ldr.SymPlt(targ))) return true case objabi.R_ADDR: if ldr.SymType(s) == sym.STEXT && target.IsElf() { // The code is asking for the address of an external // function. We provide it with the address of the // correspondent GOT symbol. ld.AddGotSym(target, ldr, syms, targ, uint32(elf.R_LARCH_64)) su := ldr.MakeSymbolUpdater(s) su.SetRelocSym(rIdx, syms.GOT) su.SetRelocAdd(rIdx, r.Add()+int64(ldr.SymGot(targ))) return true } // Process dynamic relocations for the data sections. if target.IsPIE() && target.IsInternal() { // When internally linking, generate dynamic relocations // for all typical R_ADDR relocations. The exception // are those R_ADDR that are created as part of generating // the dynamic relocations and must be resolved statically. // // There are three phases relevant to understanding this: // // dodata() // we are here // address() // symbol address assignment // reloc() // resolution of static R_ADDR relocs // // At this point symbol addresses have not been // assigned yet (as the final size of the .rela section // will affect the addresses), and so we cannot write // the Elf64_Rela.r_offset now. Instead we delay it // until after the 'address' phase of the linker is // complete. We do this via Addaddrplus, which creates // a new R_ADDR relocation which will be resolved in // the 'reloc' phase. // // These synthetic static R_ADDR relocs must be skipped // now, or else we will be caught in an infinite loop // of generating synthetic relocs for our synthetic // relocs. // // Furthermore, the rela sections contain dynamic // relocations with R_ADDR relocations on // Elf64_Rela.r_offset. This field should contain the // symbol offset as determined by reloc(), not the // final dynamically linked address as a dynamic // relocation would provide. switch ldr.SymName(s) { case ".dynsym", ".rela", ".rela.plt", ".got.plt", ".dynamic": return false } } else { // Either internally linking a static executable, // in which case we can resolve these relocations // statically in the 'reloc' phase, or externally // linking, in which case the relocation will be // prepared in the 'reloc' phase and passed to the // external linker in the 'asmb' phase. if ldr.SymType(s) != sym.SDATA && ldr.SymType(s) != sym.SRODATA { break } } if target.IsElf() { // Generate R_LARCH_RELATIVE relocations for best // efficiency in the dynamic linker. // // As noted above, symbol addresses have not been // assigned yet, so we can't generate the final reloc // entry yet. We ultimately want: // // r_offset = s + r.Off // r_info = R_LARCH_RELATIVE // r_addend = targ + r.Add // // The dynamic linker will set *offset = base address + // addend. // // AddAddrPlus is used for r_offset and r_addend to // generate new R_ADDR relocations that will update // these fields in the 'reloc' phase. rela := ldr.MakeSymbolUpdater(syms.Rela) rela.AddAddrPlus(target.Arch, s, int64(r.Off())) if r.Siz() == 8 { rela.AddUint64(target.Arch, elf.R_INFO(0, uint32(elf.R_LARCH_RELATIVE))) } else { ldr.Errorf(s, "unexpected relocation for dynamic symbol %s", ldr.SymName(targ)) } rela.AddAddrPlus(target.Arch, targ, int64(r.Add())) return true } case objabi.R_LOONG64_GOT_HI, objabi.R_LOONG64_GOT_LO: ld.AddGotSym(target, ldr, syms, targ, uint32(elf.R_LARCH_64)) su := ldr.MakeSymbolUpdater(s) if r.Type() == objabi.R_LOONG64_GOT_HI { su.SetRelocType(rIdx, objabi.R_LOONG64_ADDR_HI) } else { su.SetRelocType(rIdx, objabi.R_LOONG64_ADDR_LO) } su.SetRelocSym(rIdx, syms.GOT) su.SetRelocAdd(rIdx, r.Add()+int64(ldr.SymGot(targ))) return true } return false } func elfsetupplt(ctxt *ld.Link, ldr *loader.Loader, plt, gotplt *loader.SymbolBuilder, dynamic loader.Sym) { if plt.Size() == 0 { // pcalau12i $r14, imm plt.AddSymRef(ctxt.Arch, gotplt.Sym(), 0, objabi.R_LOONG64_ADDR_HI, 4) plt.SetUint32(ctxt.Arch, plt.Size()-4, 0x1a00000e) // sub.d $r13, $r13, $r15 plt.AddUint32(ctxt.Arch, 0x0011bdad) // ld.d $r15, $r14, imm plt.AddSymRef(ctxt.Arch, gotplt.Sym(), 0, objabi.R_LOONG64_ADDR_LO, 4) plt.SetUint32(ctxt.Arch, plt.Size()-4, 0x28c001cf) // addi.d $r13, $r13, -40 plt.AddUint32(ctxt.Arch, 0x02ff61ad) // addi.d $r12, $r14, imm plt.AddSymRef(ctxt.Arch, gotplt.Sym(), 0, objabi.R_LOONG64_ADDR_LO, 4) plt.SetUint32(ctxt.Arch, plt.Size()-4, 0x2c001cc) // srli.d $r13, $r13, 1 plt.AddUint32(ctxt.Arch, 0x004505ad) // ld.d $r12, $r12, 8 plt.AddUint32(ctxt.Arch, 0x28c0218c) // jirl $r0, $r15, 0 plt.AddUint32(ctxt.Arch, 0x4c0001e0) // check gotplt.size == 0 if gotplt.Size() != 0 { ctxt.Errorf(gotplt.Sym(), "got.plt is not empty at the very beginning") } gotplt.AddUint64(ctxt.Arch, 0) gotplt.AddUint64(ctxt.Arch, 0) } } func addpltsym(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, s loader.Sym) { if ldr.SymPlt(s) >= 0 { return } ld.Adddynsym(ldr, target, syms, s) if target.IsElf() { plt := ldr.MakeSymbolUpdater(syms.PLT) gotplt := ldr.MakeSymbolUpdater(syms.GOTPLT) rela := ldr.MakeSymbolUpdater(syms.RelaPLT) if plt.Size() == 0 { panic("plt is not set up") } // pcalau12i $r15, imm plt.AddAddrPlus4(target.Arch, gotplt.Sym(), gotplt.Size()) plt.SetUint32(target.Arch, plt.Size()-4, 0x1a00000f) relocs := plt.Relocs() plt.SetRelocType(relocs.Count()-1, objabi.R_LOONG64_ADDR_HI) // ld.d $r15, $r15, imm plt.AddAddrPlus4(target.Arch, gotplt.Sym(), gotplt.Size()) plt.SetUint32(target.Arch, plt.Size()-4, 0x28c001ef) relocs = plt.Relocs() plt.SetRelocType(relocs.Count()-1, objabi.R_LOONG64_ADDR_LO) // pcaddu12i $r13, 0 plt.AddUint32(target.Arch, 0x1c00000d) // jirl r0, r15, 0 plt.AddUint32(target.Arch, 0x4c0001e0) // add to got.plt: pointer to plt[0] gotplt.AddAddrPlus(target.Arch, plt.Sym(), 0) // rela rela.AddAddrPlus(target.Arch, gotplt.Sym(), gotplt.Size()-8) sDynid := ldr.SymDynid(s) rela.AddUint64(target.Arch, elf.R_INFO(uint32(sDynid), uint32(elf.R_LARCH_JUMP_SLOT))) rela.AddUint64(target.Arch, 0) ldr.SetPlt(s, int32(plt.Size()-16)) } else { ldr.Errorf(s, "addpltsym: unsupport binary format") } } func elfreloc1(ctxt *ld.Link, out *ld.OutBuf, ldr *loader.Loader, s loader.Sym, r loader.ExtReloc, ri int, sectoff int64) bool { // loong64 ELF relocation (endian neutral) // offset uint64 // symreloc uint64 // The high 32-bit is the symbol, the low 32-bit is the relocation type. // addend int64 elfsym := ld.ElfSymForReloc(ctxt, r.Xsym) switch r.Type { default: return false case objabi.R_ADDR, objabi.R_DWARFSECREF: switch r.Size { case 4: out.Write64(uint64(sectoff)) out.Write64(uint64(elf.R_LARCH_32) | uint64(elfsym)<<32) out.Write64(uint64(r.Xadd)) case 8: out.Write64(uint64(sectoff)) out.Write64(uint64(elf.R_LARCH_64) | uint64(elfsym)<<32) out.Write64(uint64(r.Xadd)) default: return false } case objabi.R_LOONG64_TLS_LE_LO: out.Write64(uint64(sectoff)) out.Write64(uint64(elf.R_LARCH_TLS_LE_LO12) | uint64(elfsym)<<32) out.Write64(uint64(r.Xadd)) case objabi.R_LOONG64_TLS_LE_HI: out.Write64(uint64(sectoff)) out.Write64(uint64(elf.R_LARCH_TLS_LE_HI20) | uint64(elfsym)<<32) out.Write64(uint64(r.Xadd)) case objabi.R_CALLLOONG64: out.Write64(uint64(sectoff)) out.Write64(uint64(elf.R_LARCH_B26) | uint64(elfsym)<<32) out.Write64(uint64(r.Xadd)) case objabi.R_LOONG64_TLS_IE_HI: out.Write64(uint64(sectoff)) out.Write64(uint64(elf.R_LARCH_TLS_IE_PC_HI20) | uint64(elfsym)<<32) out.Write64(uint64(0x0)) case objabi.R_LOONG64_TLS_IE_LO: out.Write64(uint64(sectoff)) out.Write64(uint64(elf.R_LARCH_TLS_IE_PC_LO12) | uint64(elfsym)<<32) out.Write64(uint64(0x0)) case objabi.R_LOONG64_ADDR_LO: out.Write64(uint64(sectoff)) out.Write64(uint64(elf.R_LARCH_PCALA_LO12) | uint64(elfsym)<<32) out.Write64(uint64(r.Xadd)) case objabi.R_LOONG64_ADDR_HI: out.Write64(uint64(sectoff)) out.Write64(uint64(elf.R_LARCH_PCALA_HI20) | uint64(elfsym)<<32) out.Write64(uint64(r.Xadd)) case objabi.R_LOONG64_GOT_HI: out.Write64(uint64(sectoff)) out.Write64(uint64(elf.R_LARCH_GOT_PC_HI20) | uint64(elfsym)<<32) out.Write64(uint64(0x0)) case objabi.R_LOONG64_GOT_LO: out.Write64(uint64(sectoff)) out.Write64(uint64(elf.R_LARCH_GOT_PC_LO12) | uint64(elfsym)<<32) out.Write64(uint64(0x0)) } return true } func machoreloc1(*sys.Arch, *ld.OutBuf, *loader.Loader, loader.Sym, loader.ExtReloc, int64) bool { return false } func archreloc(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, r loader.Reloc, s loader.Sym, val int64) (o int64, nExtReloc int, ok bool) { rs := r.Sym() if target.IsExternal() { switch r.Type() { default: return val, 0, false case objabi.R_LOONG64_ADDR_HI, objabi.R_LOONG64_ADDR_LO: // set up addend for eventual relocation via outer symbol. rs, _ := ld.FoldSubSymbolOffset(ldr, rs) rst := ldr.SymType(rs) if rst != sym.SHOSTOBJ && rst != sym.SDYNIMPORT && ldr.SymSect(rs) == nil { ldr.Errorf(s, "missing section for %s", ldr.SymName(rs)) } return val, 1, true case objabi.R_LOONG64_TLS_LE_HI, objabi.R_LOONG64_TLS_LE_LO, objabi.R_CALLLOONG64, objabi.R_JMPLOONG64, objabi.R_LOONG64_TLS_IE_HI, objabi.R_LOONG64_TLS_IE_LO, objabi.R_LOONG64_GOT_HI, objabi.R_LOONG64_GOT_LO: return val, 1, true } } const isOk = true const noExtReloc = 0 switch r.Type() { case objabi.R_CONST: return r.Add(), noExtReloc, isOk case objabi.R_GOTOFF: return ldr.SymValue(r.Sym()) + r.Add() - ldr.SymValue(syms.GOT), noExtReloc, isOk case objabi.R_LOONG64_ADDR_HI, objabi.R_LOONG64_ADDR_LO: pc := ldr.SymValue(s) + int64(r.Off()) t := calculatePCAlignedReloc(r.Type(), ldr.SymAddr(rs)+r.Add(), pc) if r.Type() == objabi.R_LOONG64_ADDR_LO { return int64(val&0xffc003ff | (t << 10)), noExtReloc, isOk } return int64(val&0xfe00001f | (t << 5)), noExtReloc, isOk case objabi.R_LOONG64_TLS_LE_HI, objabi.R_LOONG64_TLS_LE_LO: t := ldr.SymAddr(rs) + r.Add() if r.Type() == objabi.R_LOONG64_TLS_LE_LO { return int64(val&0xffc003ff | ((t & 0xfff) << 10)), noExtReloc, isOk } return int64(val&0xfe00001f | (((t) >> 12 << 5) & 0x1ffffe0)), noExtReloc, isOk case objabi.R_CALLLOONG64, objabi.R_JMPLOONG64: pc := ldr.SymValue(s) + int64(r.Off()) t := ldr.SymAddr(rs) + r.Add() - pc return int64(val&0xfc000000 | (((t >> 2) & 0xffff) << 10) | (((t >> 2) & 0x3ff0000) >> 16)), noExtReloc, isOk case objabi.R_JMP16LOONG64, objabi.R_JMP21LOONG64: pc := ldr.SymValue(s) + int64(r.Off()) t := ldr.SymAddr(rs) + r.Add() - pc if r.Type() == objabi.R_JMP16LOONG64 { return int64(val&0xfc0003ff | (((t >> 2) & 0xffff) << 10)), noExtReloc, isOk } return int64(val&0xfc0003e0 | (((t >> 2) & 0xffff) << 10) | (((t >> 2) & 0x1f0000) >> 16)), noExtReloc, isOk case objabi.R_LOONG64_TLS_IE_HI, objabi.R_LOONG64_TLS_IE_LO: if target.IsPIE() && target.IsElf() { if !target.IsLinux() { ldr.Errorf(s, "TLS reloc on unsupported OS %v", target.HeadType) } t := ldr.SymAddr(rs) + r.Add() if r.Type() == objabi.R_LOONG64_TLS_IE_HI { // pcalau12i -> lu12i.w return (0x14000000 | (val & 0x1f) | ((t >> 12) << 5)), noExtReloc, isOk } // ld.d -> ori return (0x03800000 | (val & 0x3ff) | ((t & 0xfff) << 10)), noExtReloc, isOk } else { log.Fatalf("cannot handle R_LOONG64_TLS_IE_x (sym %s) when linking internally", ldr.SymName(rs)) } case objabi.R_LOONG64_ADD64, objabi.R_LOONG64_SUB64: if r.Type() == objabi.R_LOONG64_ADD64 { return int64(val + ldr.SymAddr(rs) + r.Add()), noExtReloc, isOk } return int64(val - (ldr.SymAddr(rs) + r.Add())), noExtReloc, isOk } return val, 0, false } func archrelocvariant(*ld.Target, *loader.Loader, loader.Reloc, sym.RelocVariant, loader.Sym, int64, []byte) int64 { return -1 } func extreloc(target *ld.Target, ldr *loader.Loader, r loader.Reloc, s loader.Sym) (loader.ExtReloc, bool) { switch r.Type() { case objabi.R_LOONG64_ADDR_HI, objabi.R_LOONG64_ADDR_LO, objabi.R_LOONG64_GOT_HI, objabi.R_LOONG64_GOT_LO: return ld.ExtrelocViaOuterSym(ldr, r, s), true case objabi.R_LOONG64_TLS_LE_HI, objabi.R_LOONG64_TLS_LE_LO, objabi.R_CONST, objabi.R_GOTOFF, objabi.R_CALLLOONG64, objabi.R_JMPLOONG64, objabi.R_LOONG64_TLS_IE_HI, objabi.R_LOONG64_TLS_IE_LO: return ld.ExtrelocSimple(ldr, r), true } return loader.ExtReloc{}, false } func isRequestingLowPageBits(t objabi.RelocType) bool { switch t { case objabi.R_LOONG64_ADDR_LO: return true } return false } // Calculates the value to put into the immediate slot, according to the // desired relocation type, target and PC. // The value to use varies based on the reloc type. Namely, the absolute low // bits of the target are to be used for the low part, while the page-aligned // offset is to be used for the higher part. A "page" here is not related to // the system's actual page size, but rather a fixed 12-bit range (designed to // cooperate with ADDI/LD/ST's 12-bit immediates). func calculatePCAlignedReloc(t objabi.RelocType, tgt int64, pc int64) int64 { if isRequestingLowPageBits(t) { // corresponding immediate field is 12 bits wide return tgt & 0xfff } pageDelta := (tgt >> 12) - (pc >> 12) if tgt&0xfff >= 0x800 { // adjust for sign-extended addition of the low bits pageDelta += 1 } // corresponding immediate field is 20 bits wide return pageDelta & 0xfffff } // Convert the direct jump relocation r to refer to a trampoline if the target is too far. func trampoline(ctxt *ld.Link, ldr *loader.Loader, ri int, rs, s loader.Sym) { relocs := ldr.Relocs(s) r := relocs.At(ri) switch r.Type() { case objabi.ElfRelocOffset + objabi.RelocType(elf.R_LARCH_B26): // Nothing to do. // The plt symbol has not been added. If we add tramp // here, plt will not work. case objabi.R_CALLLOONG64: var t int64 // ldr.SymValue(rs) == 0 indicates a cross-package jump to a function that is not yet // laid out. Conservatively use a trampoline. This should be rare, as we lay out packages // in dependency order. if ldr.SymValue(rs) != 0 { t = ldr.SymValue(rs) + r.Add() - (ldr.SymValue(s) + int64(r.Off())) } if t >= 1<<27 || t < -1<<27 || ldr.SymValue(rs) == 0 || (*ld.FlagDebugTramp > 1 && (ldr.SymPkg(s) == "" || ldr.SymPkg(s) != ldr.SymPkg(rs))) { // direct call too far need to insert trampoline. // look up existing trampolines first. if we found one within the range // of direct call, we can reuse it. otherwise create a new one. var tramp loader.Sym for i := 0; ; i++ { oName := ldr.SymName(rs) name := oName + fmt.Sprintf("%+x-tramp%d", r.Add(), i) tramp = ldr.LookupOrCreateSym(name, int(ldr.SymVersion(rs))) ldr.SetAttrReachable(tramp, true) if ldr.SymType(tramp) == sym.SDYNIMPORT { // don't reuse trampoline defined in other module continue } if oName == "runtime.deferreturn" { ldr.SetIsDeferReturnTramp(tramp, true) } if ldr.SymValue(tramp) == 0 { // either the trampoline does not exist -- we need to create one, // or found one the address which is not assigned -- this will be // laid down immediately after the current function. use this one. break } t = ldr.SymValue(tramp) - (ldr.SymValue(s) + int64(r.Off())) if t >= -1<<27 && t < 1<<27 { // found an existing trampoline that is not too far // we can just use it. break } } if ldr.SymType(tramp) == 0 { // trampoline does not exist, create one trampb := ldr.MakeSymbolUpdater(tramp) ctxt.AddTramp(trampb, ldr.SymType(s)) if ldr.SymType(rs) == sym.SDYNIMPORT { if r.Add() != 0 { ctxt.Errorf(s, "nonzero addend for DYNIMPORT call: %v+%d", ldr.SymName(rs), r.Add()) } gentrampgot(ctxt, ldr, trampb, rs) } else { gentramp(ctxt, ldr, trampb, rs, r.Add()) } } // modify reloc to point to tramp, which will be resolved later sb := ldr.MakeSymbolUpdater(s) relocs := sb.Relocs() r := relocs.At(ri) r.SetSym(tramp) r.SetAdd(0) // clear the offset embedded in the instruction } default: ctxt.Errorf(s, "trampoline called with non-jump reloc: %d (%s)", r.Type(), sym.RelocName(ctxt.Arch, r.Type())) } } // generate a trampoline to target+offset. func gentramp(ctxt *ld.Link, ldr *loader.Loader, tramp *loader.SymbolBuilder, target loader.Sym, offset int64) { tramp.SetSize(12) // 3 instructions P := make([]byte, tramp.Size()) o1 := uint32(0x1a00001e) // pcalau12i $r30, 0 ctxt.Arch.ByteOrder.PutUint32(P, o1) r1, _ := tramp.AddRel(objabi.R_LOONG64_ADDR_HI) r1.SetOff(0) r1.SetSiz(4) r1.SetSym(target) r1.SetAdd(offset) o2 := uint32(0x02c003de) // addi.d $r30, $r30, 0 ctxt.Arch.ByteOrder.PutUint32(P[4:], o2) r2, _ := tramp.AddRel(objabi.R_LOONG64_ADDR_LO) r2.SetOff(4) r2.SetSiz(4) r2.SetSym(target) r2.SetAdd(offset) o3 := uint32(0x4c0003c0) // jirl $r0, $r30, 0 ctxt.Arch.ByteOrder.PutUint32(P[8:], o3) tramp.SetData(P) } func gentrampgot(ctxt *ld.Link, ldr *loader.Loader, tramp *loader.SymbolBuilder, target loader.Sym) { tramp.SetSize(12) // 3 instructions P := make([]byte, tramp.Size()) o1 := uint32(0x1a00001e) // pcalau12i $r30, 0 ctxt.Arch.ByteOrder.PutUint32(P, o1) r1, _ := tramp.AddRel(objabi.R_LOONG64_GOT_HI) r1.SetOff(0) r1.SetSiz(4) r1.SetSym(target) o2 := uint32(0x28c003de) // ld.d $r30, $r30, 0 ctxt.Arch.ByteOrder.PutUint32(P[4:], o2) r2, _ := tramp.AddRel(objabi.R_LOONG64_GOT_LO) r2.SetOff(4) r2.SetSiz(4) r2.SetSym(target) o3 := uint32(0x4c0003c0) // jirl $r0, $r30, 0 ctxt.Arch.ByteOrder.PutUint32(P[8:], o3) tramp.SetData(P) }