Source file src/cmd/internal/obj/s390x/asmz.go

     1  // Based on cmd/internal/obj/ppc64/asm9.go.
     2  //
     3  //    Copyright © 1994-1999 Lucent Technologies Inc.  All rights reserved.
     4  //    Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
     5  //    Portions Copyright © 1997-1999 Vita Nuova Limited
     6  //    Portions Copyright © 2000-2008 Vita Nuova Holdings Limited (www.vitanuova.com)
     7  //    Portions Copyright © 2004,2006 Bruce Ellis
     8  //    Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
     9  //    Revisions Copyright © 2000-2008 Lucent Technologies Inc. and others
    10  //    Portions Copyright © 2009 The Go Authors. All rights reserved.
    11  //
    12  // Permission is hereby granted, free of charge, to any person obtaining a copy
    13  // of this software and associated documentation files (the "Software"), to deal
    14  // in the Software without restriction, including without limitation the rights
    15  // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    16  // copies of the Software, and to permit persons to whom the Software is
    17  // furnished to do so, subject to the following conditions:
    18  //
    19  // The above copyright notice and this permission notice shall be included in
    20  // all copies or substantial portions of the Software.
    21  //
    22  // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    23  // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    24  // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
    25  // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    26  // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    27  // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    28  // THE SOFTWARE.
    29  
    30  package s390x
    31  
    32  import (
    33  	"cmd/internal/obj"
    34  	"cmd/internal/objabi"
    35  	"fmt"
    36  	"log"
    37  	"math"
    38  	"slices"
    39  )
    40  
    41  // ctxtz holds state while assembling a single function.
    42  // Each function gets a fresh ctxtz.
    43  // This allows for multiple functions to be safely concurrently assembled.
    44  type ctxtz struct {
    45  	ctxt       *obj.Link
    46  	newprog    obj.ProgAlloc
    47  	cursym     *obj.LSym
    48  	autosize   int32
    49  	instoffset int64
    50  	pc         int64
    51  }
    52  
    53  // instruction layout.
    54  const (
    55  	funcAlign = 16
    56  )
    57  
    58  type Optab struct {
    59  	as obj.As // opcode
    60  	i  uint8  // handler index
    61  	a1 uint8  // From
    62  	a2 uint8  // Reg
    63  	a3 uint8  // RestArgs[0]
    64  	a4 uint8  // RestArgs[1]
    65  	a5 uint8  // RestArgs[2]
    66  	a6 uint8  // To
    67  }
    68  
    69  var optab = []Optab{
    70  	// zero-length instructions
    71  	{i: 0, as: obj.ATEXT, a1: C_ADDR, a6: C_TEXTSIZE},
    72  	{i: 0, as: obj.ATEXT, a1: C_ADDR, a3: C_LCON, a6: C_TEXTSIZE},
    73  	{i: 0, as: obj.APCDATA, a1: C_LCON, a6: C_LCON},
    74  	{i: 0, as: obj.AFUNCDATA, a1: C_SCON, a6: C_ADDR},
    75  	{i: 0, as: obj.ANOP},
    76  	{i: 0, as: obj.ANOP, a1: C_SAUTO},
    77  
    78  	// move register
    79  	{i: 1, as: AMOVD, a1: C_REG, a6: C_REG},
    80  	{i: 1, as: AMOVB, a1: C_REG, a6: C_REG},
    81  	{i: 1, as: AMOVBZ, a1: C_REG, a6: C_REG},
    82  	{i: 1, as: AMOVW, a1: C_REG, a6: C_REG},
    83  	{i: 1, as: AMOVWZ, a1: C_REG, a6: C_REG},
    84  	{i: 1, as: AFMOVD, a1: C_FREG, a6: C_FREG},
    85  	{i: 1, as: AMOVDBR, a1: C_REG, a6: C_REG},
    86  
    87  	// load constant
    88  	{i: 26, as: AMOVD, a1: C_LACON, a6: C_REG},
    89  	{i: 26, as: AMOVW, a1: C_LACON, a6: C_REG},
    90  	{i: 26, as: AMOVWZ, a1: C_LACON, a6: C_REG},
    91  	{i: 3, as: AMOVD, a1: C_DCON, a6: C_REG},
    92  	{i: 3, as: AMOVW, a1: C_DCON, a6: C_REG},
    93  	{i: 3, as: AMOVWZ, a1: C_DCON, a6: C_REG},
    94  	{i: 3, as: AMOVB, a1: C_DCON, a6: C_REG},
    95  	{i: 3, as: AMOVBZ, a1: C_DCON, a6: C_REG},
    96  
    97  	// store constant
    98  	{i: 72, as: AMOVD, a1: C_SCON, a6: C_LAUTO},
    99  	{i: 72, as: AMOVD, a1: C_ADDCON, a6: C_LAUTO},
   100  	{i: 72, as: AMOVW, a1: C_SCON, a6: C_LAUTO},
   101  	{i: 72, as: AMOVW, a1: C_ADDCON, a6: C_LAUTO},
   102  	{i: 72, as: AMOVWZ, a1: C_SCON, a6: C_LAUTO},
   103  	{i: 72, as: AMOVWZ, a1: C_ADDCON, a6: C_LAUTO},
   104  	{i: 72, as: AMOVB, a1: C_SCON, a6: C_LAUTO},
   105  	{i: 72, as: AMOVB, a1: C_ADDCON, a6: C_LAUTO},
   106  	{i: 72, as: AMOVBZ, a1: C_SCON, a6: C_LAUTO},
   107  	{i: 72, as: AMOVBZ, a1: C_ADDCON, a6: C_LAUTO},
   108  	{i: 72, as: AMOVD, a1: C_SCON, a6: C_LOREG},
   109  	{i: 72, as: AMOVD, a1: C_ADDCON, a6: C_LOREG},
   110  	{i: 72, as: AMOVW, a1: C_SCON, a6: C_LOREG},
   111  	{i: 72, as: AMOVW, a1: C_ADDCON, a6: C_LOREG},
   112  	{i: 72, as: AMOVWZ, a1: C_SCON, a6: C_LOREG},
   113  	{i: 72, as: AMOVWZ, a1: C_ADDCON, a6: C_LOREG},
   114  	{i: 72, as: AMOVB, a1: C_SCON, a6: C_LOREG},
   115  	{i: 72, as: AMOVB, a1: C_ADDCON, a6: C_LOREG},
   116  	{i: 72, as: AMOVBZ, a1: C_SCON, a6: C_LOREG},
   117  	{i: 72, as: AMOVBZ, a1: C_ADDCON, a6: C_LOREG},
   118  
   119  	// store
   120  	{i: 35, as: AMOVD, a1: C_REG, a6: C_LAUTO},
   121  	{i: 35, as: AMOVW, a1: C_REG, a6: C_LAUTO},
   122  	{i: 35, as: AMOVWZ, a1: C_REG, a6: C_LAUTO},
   123  	{i: 35, as: AMOVBZ, a1: C_REG, a6: C_LAUTO},
   124  	{i: 35, as: AMOVB, a1: C_REG, a6: C_LAUTO},
   125  	{i: 35, as: AMOVDBR, a1: C_REG, a6: C_LAUTO},
   126  	{i: 35, as: AMOVHBR, a1: C_REG, a6: C_LAUTO},
   127  	{i: 35, as: AMOVD, a1: C_REG, a6: C_LOREG},
   128  	{i: 35, as: AMOVW, a1: C_REG, a6: C_LOREG},
   129  	{i: 35, as: AMOVWZ, a1: C_REG, a6: C_LOREG},
   130  	{i: 35, as: AMOVBZ, a1: C_REG, a6: C_LOREG},
   131  	{i: 35, as: AMOVB, a1: C_REG, a6: C_LOREG},
   132  	{i: 35, as: AMOVDBR, a1: C_REG, a6: C_LOREG},
   133  	{i: 35, as: AMOVHBR, a1: C_REG, a6: C_LOREG},
   134  	{i: 74, as: AMOVD, a1: C_REG, a6: C_ADDR},
   135  	{i: 74, as: AMOVW, a1: C_REG, a6: C_ADDR},
   136  	{i: 74, as: AMOVWZ, a1: C_REG, a6: C_ADDR},
   137  	{i: 74, as: AMOVBZ, a1: C_REG, a6: C_ADDR},
   138  	{i: 74, as: AMOVB, a1: C_REG, a6: C_ADDR},
   139  
   140  	// load
   141  	{i: 36, as: AMOVD, a1: C_LAUTO, a6: C_REG},
   142  	{i: 36, as: AMOVW, a1: C_LAUTO, a6: C_REG},
   143  	{i: 36, as: AMOVWZ, a1: C_LAUTO, a6: C_REG},
   144  	{i: 36, as: AMOVBZ, a1: C_LAUTO, a6: C_REG},
   145  	{i: 36, as: AMOVB, a1: C_LAUTO, a6: C_REG},
   146  	{i: 36, as: AMOVDBR, a1: C_LAUTO, a6: C_REG},
   147  	{i: 36, as: AMOVHBR, a1: C_LAUTO, a6: C_REG},
   148  	{i: 36, as: AMOVD, a1: C_LOREG, a6: C_REG},
   149  	{i: 36, as: AMOVW, a1: C_LOREG, a6: C_REG},
   150  	{i: 36, as: AMOVWZ, a1: C_LOREG, a6: C_REG},
   151  	{i: 36, as: AMOVBZ, a1: C_LOREG, a6: C_REG},
   152  	{i: 36, as: AMOVB, a1: C_LOREG, a6: C_REG},
   153  	{i: 36, as: AMOVDBR, a1: C_LOREG, a6: C_REG},
   154  	{i: 36, as: AMOVHBR, a1: C_LOREG, a6: C_REG},
   155  	{i: 75, as: AMOVD, a1: C_ADDR, a6: C_REG},
   156  	{i: 75, as: AMOVW, a1: C_ADDR, a6: C_REG},
   157  	{i: 75, as: AMOVWZ, a1: C_ADDR, a6: C_REG},
   158  	{i: 75, as: AMOVBZ, a1: C_ADDR, a6: C_REG},
   159  	{i: 75, as: AMOVB, a1: C_ADDR, a6: C_REG},
   160  
   161  	// interlocked load and op
   162  	{i: 99, as: ALAAG, a1: C_REG, a2: C_REG, a6: C_LOREG},
   163  
   164  	// integer arithmetic
   165  	{i: 2, as: AADD, a1: C_REG, a2: C_REG, a6: C_REG},
   166  	{i: 2, as: AADD, a1: C_REG, a6: C_REG},
   167  	{i: 22, as: AADD, a1: C_LCON, a2: C_REG, a6: C_REG},
   168  	{i: 22, as: AADD, a1: C_LCON, a6: C_REG},
   169  	{i: 12, as: AADD, a1: C_LOREG, a6: C_REG},
   170  	{i: 12, as: AADD, a1: C_LAUTO, a6: C_REG},
   171  	{i: 21, as: ASUB, a1: C_LCON, a2: C_REG, a6: C_REG},
   172  	{i: 21, as: ASUB, a1: C_LCON, a6: C_REG},
   173  	{i: 12, as: ASUB, a1: C_LOREG, a6: C_REG},
   174  	{i: 12, as: ASUB, a1: C_LAUTO, a6: C_REG},
   175  	{i: 4, as: AMULHD, a1: C_REG, a6: C_REG},
   176  	{i: 4, as: AMULHD, a1: C_REG, a2: C_REG, a6: C_REG},
   177  	{i: 62, as: AMLGR, a1: C_REG, a6: C_REG},
   178  	{i: 2, as: ADIVW, a1: C_REG, a2: C_REG, a6: C_REG},
   179  	{i: 2, as: ADIVW, a1: C_REG, a6: C_REG},
   180  	{i: 10, as: ASUB, a1: C_REG, a2: C_REG, a6: C_REG},
   181  	{i: 10, as: ASUB, a1: C_REG, a6: C_REG},
   182  	{i: 47, as: ANEG, a1: C_REG, a6: C_REG},
   183  	{i: 47, as: ANEG, a6: C_REG},
   184  
   185  	// integer logical
   186  	{i: 6, as: AAND, a1: C_REG, a2: C_REG, a6: C_REG},
   187  	{i: 6, as: AAND, a1: C_REG, a6: C_REG},
   188  	{i: 23, as: AAND, a1: C_LCON, a6: C_REG},
   189  	{i: 12, as: AAND, a1: C_LOREG, a6: C_REG},
   190  	{i: 12, as: AAND, a1: C_LAUTO, a6: C_REG},
   191  	{i: 6, as: AANDW, a1: C_REG, a2: C_REG, a6: C_REG},
   192  	{i: 6, as: AANDW, a1: C_REG, a6: C_REG},
   193  	{i: 24, as: AANDW, a1: C_LCON, a6: C_REG},
   194  	{i: 12, as: AANDW, a1: C_LOREG, a6: C_REG},
   195  	{i: 12, as: AANDW, a1: C_LAUTO, a6: C_REG},
   196  	{i: 7, as: ASLD, a1: C_REG, a6: C_REG},
   197  	{i: 7, as: ASLD, a1: C_REG, a2: C_REG, a6: C_REG},
   198  	{i: 7, as: ASLD, a1: C_SCON, a2: C_REG, a6: C_REG},
   199  	{i: 7, as: ASLD, a1: C_SCON, a6: C_REG},
   200  	{i: 13, as: ARNSBG, a1: C_SCON, a3: C_SCON, a4: C_SCON, a5: C_REG, a6: C_REG},
   201  
   202  	// compare and swap
   203  	{i: 79, as: ACSG, a1: C_REG, a2: C_REG, a6: C_SOREG},
   204  
   205  	// floating point
   206  	{i: 32, as: AFADD, a1: C_FREG, a6: C_FREG},
   207  	{i: 33, as: AFABS, a1: C_FREG, a6: C_FREG},
   208  	{i: 33, as: AFABS, a6: C_FREG},
   209  	{i: 34, as: AFMADD, a1: C_FREG, a2: C_FREG, a6: C_FREG},
   210  	{i: 32, as: AFMUL, a1: C_FREG, a6: C_FREG},
   211  	{i: 36, as: AFMOVD, a1: C_LAUTO, a6: C_FREG},
   212  	{i: 36, as: AFMOVD, a1: C_LOREG, a6: C_FREG},
   213  	{i: 75, as: AFMOVD, a1: C_ADDR, a6: C_FREG},
   214  	{i: 35, as: AFMOVD, a1: C_FREG, a6: C_LAUTO},
   215  	{i: 35, as: AFMOVD, a1: C_FREG, a6: C_LOREG},
   216  	{i: 74, as: AFMOVD, a1: C_FREG, a6: C_ADDR},
   217  	{i: 67, as: AFMOVD, a1: C_ZCON, a6: C_FREG},
   218  	{i: 81, as: ALDGR, a1: C_REG, a6: C_FREG},
   219  	{i: 81, as: ALGDR, a1: C_FREG, a6: C_REG},
   220  	{i: 82, as: ACEFBRA, a1: C_REG, a6: C_FREG},
   221  	{i: 83, as: ACFEBRA, a1: C_FREG, a6: C_REG},
   222  	{i: 48, as: AFIEBR, a1: C_SCON, a2: C_FREG, a6: C_FREG},
   223  	{i: 49, as: ACPSDR, a1: C_FREG, a2: C_FREG, a6: C_FREG},
   224  	{i: 50, as: ALTDBR, a1: C_FREG, a6: C_FREG},
   225  	{i: 51, as: ATCDB, a1: C_FREG, a6: C_SCON},
   226  
   227  	// load symbol address (plus offset)
   228  	{i: 19, as: AMOVD, a1: C_SYMADDR, a6: C_REG},
   229  	{i: 93, as: AMOVD, a1: C_GOTADDR, a6: C_REG},
   230  	{i: 94, as: AMOVD, a1: C_TLS_LE, a6: C_REG},
   231  	{i: 95, as: AMOVD, a1: C_TLS_IE, a6: C_REG},
   232  
   233  	// system call
   234  	{i: 5, as: ASYSCALL},
   235  	{i: 77, as: ASYSCALL, a1: C_SCON},
   236  
   237  	// branch
   238  	{i: 16, as: ABEQ, a6: C_SBRA},
   239  	{i: 16, as: ABRC, a1: C_SCON, a6: C_SBRA},
   240  	{i: 11, as: ABR, a6: C_LBRA},
   241  	{i: 16, as: ABC, a1: C_SCON, a2: C_REG, a6: C_LBRA},
   242  	{i: 18, as: ABR, a6: C_REG},
   243  	{i: 18, as: ABR, a1: C_REG, a6: C_REG},
   244  	{i: 15, as: ABR, a6: C_ZOREG},
   245  	{i: 15, as: ABC, a6: C_ZOREG},
   246  
   247  	// compare and branch
   248  	{i: 89, as: ACGRJ, a1: C_SCON, a2: C_REG, a3: C_REG, a6: C_SBRA},
   249  	{i: 89, as: ACMPBEQ, a1: C_REG, a2: C_REG, a6: C_SBRA},
   250  	{i: 89, as: ACLGRJ, a1: C_SCON, a2: C_REG, a3: C_REG, a6: C_SBRA},
   251  	{i: 89, as: ACMPUBEQ, a1: C_REG, a2: C_REG, a6: C_SBRA},
   252  	{i: 90, as: ACGIJ, a1: C_SCON, a2: C_REG, a3: C_ADDCON, a6: C_SBRA},
   253  	{i: 90, as: ACGIJ, a1: C_SCON, a2: C_REG, a3: C_SCON, a6: C_SBRA},
   254  	{i: 90, as: ACMPBEQ, a1: C_REG, a3: C_ADDCON, a6: C_SBRA},
   255  	{i: 90, as: ACMPBEQ, a1: C_REG, a3: C_SCON, a6: C_SBRA},
   256  	{i: 90, as: ACLGIJ, a1: C_SCON, a2: C_REG, a3: C_ADDCON, a6: C_SBRA},
   257  	{i: 90, as: ACMPUBEQ, a1: C_REG, a3: C_ANDCON, a6: C_SBRA},
   258  
   259  	// branch on count
   260  	{i: 41, as: ABRCT, a1: C_REG, a6: C_SBRA},
   261  	{i: 41, as: ABRCTG, a1: C_REG, a6: C_SBRA},
   262  
   263  	// move on condition
   264  	{i: 17, as: AMOVDEQ, a1: C_REG, a6: C_REG},
   265  
   266  	// load on condition
   267  	{i: 25, as: ALOCGR, a1: C_SCON, a2: C_REG, a6: C_REG},
   268  
   269  	// find leftmost one
   270  	{i: 8, as: AFLOGR, a1: C_REG, a6: C_REG},
   271  
   272  	// population count
   273  	{i: 9, as: APOPCNT, a1: C_REG, a6: C_REG},
   274  
   275  	// compare
   276  	{i: 70, as: ACMP, a1: C_REG, a6: C_REG},
   277  	{i: 71, as: ACMP, a1: C_REG, a6: C_LCON},
   278  	{i: 70, as: ACMPU, a1: C_REG, a6: C_REG},
   279  	{i: 71, as: ACMPU, a1: C_REG, a6: C_LCON},
   280  	{i: 70, as: AFCMPO, a1: C_FREG, a6: C_FREG},
   281  	{i: 70, as: AFCMPO, a1: C_FREG, a2: C_REG, a6: C_FREG},
   282  
   283  	// test under mask
   284  	{i: 91, as: ATMHH, a1: C_REG, a6: C_ANDCON},
   285  
   286  	// insert program mask
   287  	{i: 92, as: AIPM, a1: C_REG},
   288  
   289  	// set program mask
   290  	{i: 76, as: ASPM, a1: C_REG},
   291  
   292  	// 32-bit access registers
   293  	{i: 68, as: AMOVW, a1: C_AREG, a6: C_REG},
   294  	{i: 68, as: AMOVWZ, a1: C_AREG, a6: C_REG},
   295  	{i: 69, as: AMOVW, a1: C_REG, a6: C_AREG},
   296  	{i: 69, as: AMOVWZ, a1: C_REG, a6: C_AREG},
   297  
   298  	// macros
   299  	{i: 96, as: ACLEAR, a1: C_LCON, a6: C_LOREG},
   300  	{i: 96, as: ACLEAR, a1: C_LCON, a6: C_LAUTO},
   301  
   302  	// load/store multiple
   303  	{i: 97, as: ASTMG, a1: C_REG, a2: C_REG, a6: C_LOREG},
   304  	{i: 97, as: ASTMG, a1: C_REG, a2: C_REG, a6: C_LAUTO},
   305  	{i: 98, as: ALMG, a1: C_LOREG, a2: C_REG, a6: C_REG},
   306  	{i: 98, as: ALMG, a1: C_LAUTO, a2: C_REG, a6: C_REG},
   307  
   308  	// bytes
   309  	{i: 40, as: ABYTE, a1: C_SCON},
   310  	{i: 40, as: AWORD, a1: C_LCON},
   311  	{i: 31, as: ADWORD, a1: C_LCON},
   312  	{i: 31, as: ADWORD, a1: C_DCON},
   313  
   314  	// fast synchronization
   315  	{i: 80, as: ASYNC},
   316  
   317  	// store clock
   318  	{i: 88, as: ASTCK, a6: C_SAUTO},
   319  	{i: 88, as: ASTCK, a6: C_SOREG},
   320  
   321  	// storage and storage
   322  	{i: 84, as: AMVC, a1: C_SCON, a3: C_LOREG, a6: C_LOREG},
   323  	{i: 84, as: AMVC, a1: C_SCON, a3: C_LOREG, a6: C_LAUTO},
   324  	{i: 84, as: AMVC, a1: C_SCON, a3: C_LAUTO, a6: C_LAUTO},
   325  
   326  	// address
   327  	{i: 85, as: ALARL, a1: C_LCON, a6: C_REG},
   328  	{i: 85, as: ALARL, a1: C_SYMADDR, a6: C_REG},
   329  	{i: 86, as: ALA, a1: C_SOREG, a6: C_REG},
   330  	{i: 86, as: ALA, a1: C_SAUTO, a6: C_REG},
   331  	{i: 87, as: AEXRL, a1: C_SYMADDR, a6: C_REG},
   332  
   333  	// undefined (deliberate illegal instruction)
   334  	{i: 78, as: obj.AUNDEF},
   335  
   336  	// Break point instruction(0x0001 opcode)
   337  	{i: 73, as: ABRRK},
   338  
   339  	// 2 byte no-operation
   340  	{i: 66, as: ANOPH},
   341  
   342  	// crypto instructions
   343  
   344  	// KM
   345  	{i: 124, as: AKM, a1: C_REG, a6: C_REG},
   346  
   347  	// KDSA
   348  	{i: 125, as: AKDSA, a1: C_REG, a6: C_REG},
   349  
   350  	// KMA
   351  	{i: 126, as: AKMA, a1: C_REG, a2: C_REG, a6: C_REG},
   352  
   353  	// vector instructions
   354  
   355  	// VRX store
   356  	{i: 100, as: AVST, a1: C_VREG, a6: C_SOREG},
   357  	{i: 100, as: AVST, a1: C_VREG, a6: C_SAUTO},
   358  	{i: 100, as: AVSTEG, a1: C_SCON, a2: C_VREG, a6: C_SOREG},
   359  	{i: 100, as: AVSTEG, a1: C_SCON, a2: C_VREG, a6: C_SAUTO},
   360  
   361  	// VRX load
   362  	{i: 101, as: AVL, a1: C_SOREG, a6: C_VREG},
   363  	{i: 101, as: AVL, a1: C_SAUTO, a6: C_VREG},
   364  	{i: 101, as: AVLEG, a1: C_SCON, a3: C_SOREG, a6: C_VREG},
   365  	{i: 101, as: AVLEG, a1: C_SCON, a3: C_SAUTO, a6: C_VREG},
   366  
   367  	// VRV scatter
   368  	{i: 102, as: AVSCEG, a1: C_SCON, a2: C_VREG, a6: C_SOREG},
   369  	{i: 102, as: AVSCEG, a1: C_SCON, a2: C_VREG, a6: C_SAUTO},
   370  
   371  	// VRV gather
   372  	{i: 103, as: AVGEG, a1: C_SCON, a3: C_SOREG, a6: C_VREG},
   373  	{i: 103, as: AVGEG, a1: C_SCON, a3: C_SAUTO, a6: C_VREG},
   374  
   375  	// VRS element shift/rotate and load gr to/from vr element
   376  	{i: 104, as: AVESLG, a1: C_SCON, a2: C_VREG, a6: C_VREG},
   377  	{i: 104, as: AVESLG, a1: C_REG, a2: C_VREG, a6: C_VREG},
   378  	{i: 104, as: AVESLG, a1: C_SCON, a6: C_VREG},
   379  	{i: 104, as: AVESLG, a1: C_REG, a6: C_VREG},
   380  	{i: 104, as: AVLGVG, a1: C_SCON, a2: C_VREG, a6: C_REG},
   381  	{i: 104, as: AVLGVG, a1: C_REG, a2: C_VREG, a6: C_REG},
   382  	{i: 104, as: AVLVGG, a1: C_SCON, a2: C_REG, a6: C_VREG},
   383  	{i: 104, as: AVLVGG, a1: C_REG, a2: C_REG, a6: C_VREG},
   384  
   385  	// VRS store multiple
   386  	{i: 105, as: AVSTM, a1: C_VREG, a2: C_VREG, a6: C_SOREG},
   387  	{i: 105, as: AVSTM, a1: C_VREG, a2: C_VREG, a6: C_SAUTO},
   388  
   389  	// VRS load multiple
   390  	{i: 106, as: AVLM, a1: C_SOREG, a2: C_VREG, a6: C_VREG},
   391  	{i: 106, as: AVLM, a1: C_SAUTO, a2: C_VREG, a6: C_VREG},
   392  
   393  	// VRS store with length
   394  	{i: 107, as: AVSTL, a1: C_REG, a2: C_VREG, a6: C_SOREG},
   395  	{i: 107, as: AVSTL, a1: C_REG, a2: C_VREG, a6: C_SAUTO},
   396  
   397  	// VRS load with length
   398  	{i: 108, as: AVLL, a1: C_REG, a3: C_SOREG, a6: C_VREG},
   399  	{i: 108, as: AVLL, a1: C_REG, a3: C_SAUTO, a6: C_VREG},
   400  
   401  	// VRI-a
   402  	{i: 109, as: AVGBM, a1: C_ANDCON, a6: C_VREG},
   403  	{i: 109, as: AVZERO, a6: C_VREG},
   404  	{i: 109, as: AVREPIG, a1: C_ADDCON, a6: C_VREG},
   405  	{i: 109, as: AVREPIG, a1: C_SCON, a6: C_VREG},
   406  	{i: 109, as: AVLEIG, a1: C_SCON, a3: C_ADDCON, a6: C_VREG},
   407  	{i: 109, as: AVLEIG, a1: C_SCON, a3: C_SCON, a6: C_VREG},
   408  
   409  	// VRI-b generate mask
   410  	{i: 110, as: AVGMG, a1: C_SCON, a3: C_SCON, a6: C_VREG},
   411  
   412  	// VRI-c replicate
   413  	{i: 111, as: AVREPG, a1: C_UCON, a2: C_VREG, a6: C_VREG},
   414  
   415  	// VRI-d element rotate and insert under mask and
   416  	// shift left double by byte
   417  	{i: 112, as: AVERIMG, a1: C_SCON, a2: C_VREG, a3: C_VREG, a6: C_VREG},
   418  	{i: 112, as: AVSLDB, a1: C_SCON, a2: C_VREG, a3: C_VREG, a6: C_VREG},
   419  
   420  	// VRI-d fp test data class immediate
   421  	{i: 113, as: AVFTCIDB, a1: C_SCON, a2: C_VREG, a6: C_VREG},
   422  
   423  	// VRR-a load reg
   424  	{i: 114, as: AVLR, a1: C_VREG, a6: C_VREG},
   425  
   426  	// VRR-a compare
   427  	{i: 115, as: AVECG, a1: C_VREG, a6: C_VREG},
   428  
   429  	// VRR-b
   430  	{i: 117, as: AVCEQG, a1: C_VREG, a2: C_VREG, a6: C_VREG},
   431  	{i: 117, as: AVFAEF, a1: C_VREG, a2: C_VREG, a6: C_VREG},
   432  	{i: 117, as: AVPKSG, a1: C_VREG, a2: C_VREG, a6: C_VREG},
   433  
   434  	// VRR-c
   435  	{i: 118, as: AVAQ, a1: C_VREG, a2: C_VREG, a6: C_VREG},
   436  	{i: 118, as: AVAQ, a1: C_VREG, a6: C_VREG},
   437  	{i: 118, as: AVNOT, a1: C_VREG, a6: C_VREG},
   438  	{i: 123, as: AVPDI, a1: C_SCON, a2: C_VREG, a3: C_VREG, a6: C_VREG},
   439  
   440  	// VRR-c shifts
   441  	{i: 119, as: AVERLLVG, a1: C_VREG, a2: C_VREG, a6: C_VREG},
   442  	{i: 119, as: AVERLLVG, a1: C_VREG, a6: C_VREG},
   443  
   444  	// VRR-d
   445  	{i: 120, as: AVACQ, a1: C_VREG, a2: C_VREG, a3: C_VREG, a6: C_VREG},
   446  
   447  	// VRR-e
   448  	{i: 121, as: AVSEL, a1: C_VREG, a2: C_VREG, a3: C_VREG, a6: C_VREG},
   449  
   450  	// VRR-f
   451  	{i: 122, as: AVLVGP, a1: C_REG, a2: C_REG, a6: C_VREG},
   452  
   453  	// MVC storage and storage
   454  	{i: 127, as: AMVCLE, a1: C_LOREG, a2: C_REG, a6: C_REG},
   455  	{i: 127, as: AMVCLE, a1: C_SCON, a2: C_REG, a6: C_REG},
   456  }
   457  
   458  var oprange [ALAST & obj.AMask][]Optab
   459  
   460  var xcmp [C_NCLASS][C_NCLASS]bool
   461  
   462  func spanz(ctxt *obj.Link, cursym *obj.LSym, newprog obj.ProgAlloc) {
   463  	if ctxt.Retpoline {
   464  		ctxt.Diag("-spectre=ret not supported on s390x")
   465  		ctxt.Retpoline = false // don't keep printing
   466  	}
   467  
   468  	p := cursym.Func().Text
   469  	if p == nil || p.Link == nil { // handle external functions and ELF section symbols
   470  		return
   471  	}
   472  
   473  	if oprange[AORW&obj.AMask] == nil {
   474  		ctxt.Diag("s390x ops not initialized, call s390x.buildop first")
   475  	}
   476  
   477  	c := ctxtz{ctxt: ctxt, newprog: newprog, cursym: cursym, autosize: int32(p.To.Offset)}
   478  
   479  	buffer := make([]byte, 0)
   480  	changed := true
   481  	loop := 0
   482  	nrelocs0 := len(c.cursym.R)
   483  	for changed {
   484  		if loop > 100 {
   485  			c.ctxt.Diag("stuck in spanz loop")
   486  			break
   487  		}
   488  		changed = false
   489  		buffer = buffer[:0]
   490  		for i := range c.cursym.R[nrelocs0:] {
   491  			c.cursym.R[nrelocs0+i] = obj.Reloc{}
   492  		}
   493  		c.cursym.R = c.cursym.R[:nrelocs0] // preserve marker relocations generated by the compiler
   494  		for p := c.cursym.Func().Text; p != nil; p = p.Link {
   495  			pc := int64(len(buffer))
   496  			if pc != p.Pc {
   497  				changed = true
   498  			}
   499  			p.Pc = pc
   500  			c.pc = p.Pc
   501  			c.asmout(p, &buffer)
   502  			if pc == int64(len(buffer)) {
   503  				switch p.As {
   504  				case obj.ANOP, obj.AFUNCDATA, obj.APCDATA, obj.ATEXT:
   505  					// ok
   506  				default:
   507  					c.ctxt.Diag("zero-width instruction\n%v", p)
   508  				}
   509  			}
   510  		}
   511  		loop++
   512  	}
   513  
   514  	c.cursym.Size = int64(len(buffer))
   515  	if c.cursym.Size%funcAlign != 0 {
   516  		c.cursym.Size += funcAlign - (c.cursym.Size % funcAlign)
   517  	}
   518  	c.cursym.Grow(c.cursym.Size)
   519  	copy(c.cursym.P, buffer)
   520  
   521  	// Mark nonpreemptible instruction sequences.
   522  	// We use REGTMP as a scratch register during call injection,
   523  	// so instruction sequences that use REGTMP are unsafe to
   524  	// preempt asynchronously.
   525  	obj.MarkUnsafePoints(c.ctxt, c.cursym.Func().Text, c.newprog, c.isUnsafePoint, nil)
   526  }
   527  
   528  // Return whether p is an unsafe point.
   529  func (c *ctxtz) isUnsafePoint(p *obj.Prog) bool {
   530  	if p.From.Reg == REGTMP || p.To.Reg == REGTMP || p.Reg == REGTMP {
   531  		return true
   532  	}
   533  	for _, a := range p.RestArgs {
   534  		if a.Reg == REGTMP {
   535  			return true
   536  		}
   537  	}
   538  	return p.Mark&USETMP != 0
   539  }
   540  
   541  func isint32(v int64) bool {
   542  	return int64(int32(v)) == v
   543  }
   544  
   545  func isuint32(v uint64) bool {
   546  	return uint64(uint32(v)) == v
   547  }
   548  
   549  func (c *ctxtz) aclass(a *obj.Addr) int {
   550  	switch a.Type {
   551  	case obj.TYPE_NONE:
   552  		return C_NONE
   553  
   554  	case obj.TYPE_REG:
   555  		if REG_R0 <= a.Reg && a.Reg <= REG_R15 {
   556  			return C_REG
   557  		}
   558  		if REG_F0 <= a.Reg && a.Reg <= REG_F15 {
   559  			return C_FREG
   560  		}
   561  		if REG_AR0 <= a.Reg && a.Reg <= REG_AR15 {
   562  			return C_AREG
   563  		}
   564  		if REG_V0 <= a.Reg && a.Reg <= REG_V31 {
   565  			return C_VREG
   566  		}
   567  		return C_GOK
   568  
   569  	case obj.TYPE_MEM:
   570  		switch a.Name {
   571  		case obj.NAME_EXTERN,
   572  			obj.NAME_STATIC:
   573  			if a.Sym == nil {
   574  				// must have a symbol
   575  				break
   576  			}
   577  			c.instoffset = a.Offset
   578  			if a.Sym.Type == objabi.STLSBSS {
   579  				if c.ctxt.Flag_shared {
   580  					return C_TLS_IE // initial exec model
   581  				}
   582  				return C_TLS_LE // local exec model
   583  			}
   584  			return C_ADDR
   585  
   586  		case obj.NAME_GOTREF:
   587  			return C_GOTADDR
   588  
   589  		case obj.NAME_AUTO:
   590  			if a.Reg == REGSP {
   591  				// unset base register for better printing, since
   592  				// a.Offset is still relative to pseudo-SP.
   593  				a.Reg = obj.REG_NONE
   594  			}
   595  			c.instoffset = int64(c.autosize) + a.Offset
   596  			if c.instoffset >= -BIG && c.instoffset < BIG {
   597  				return C_SAUTO
   598  			}
   599  			return C_LAUTO
   600  
   601  		case obj.NAME_PARAM:
   602  			if a.Reg == REGSP {
   603  				// unset base register for better printing, since
   604  				// a.Offset is still relative to pseudo-FP.
   605  				a.Reg = obj.REG_NONE
   606  			}
   607  			c.instoffset = int64(c.autosize) + a.Offset + c.ctxt.Arch.FixedFrameSize
   608  			if c.instoffset >= -BIG && c.instoffset < BIG {
   609  				return C_SAUTO
   610  			}
   611  			return C_LAUTO
   612  
   613  		case obj.NAME_NONE:
   614  			c.instoffset = a.Offset
   615  			if c.instoffset == 0 {
   616  				return C_ZOREG
   617  			}
   618  			if c.instoffset >= -BIG && c.instoffset < BIG {
   619  				return C_SOREG
   620  			}
   621  			return C_LOREG
   622  		}
   623  
   624  		return C_GOK
   625  
   626  	case obj.TYPE_TEXTSIZE:
   627  		return C_TEXTSIZE
   628  
   629  	case obj.TYPE_FCONST:
   630  		if f64, ok := a.Val.(float64); ok && math.Float64bits(f64) == 0 {
   631  			return C_ZCON
   632  		}
   633  		c.ctxt.Diag("cannot handle the floating point constant %v", a.Val)
   634  
   635  	case obj.TYPE_CONST,
   636  		obj.TYPE_ADDR:
   637  		switch a.Name {
   638  		case obj.NAME_NONE:
   639  			c.instoffset = a.Offset
   640  			if a.Reg != 0 {
   641  				if -BIG <= c.instoffset && c.instoffset <= BIG {
   642  					return C_SACON
   643  				}
   644  				if isint32(c.instoffset) {
   645  					return C_LACON
   646  				}
   647  				return C_DACON
   648  			}
   649  
   650  		case obj.NAME_EXTERN,
   651  			obj.NAME_STATIC:
   652  			s := a.Sym
   653  			if s == nil {
   654  				return C_GOK
   655  			}
   656  			c.instoffset = a.Offset
   657  
   658  			return C_SYMADDR
   659  
   660  		case obj.NAME_AUTO:
   661  			if a.Reg == REGSP {
   662  				// unset base register for better printing, since
   663  				// a.Offset is still relative to pseudo-SP.
   664  				a.Reg = obj.REG_NONE
   665  			}
   666  			c.instoffset = int64(c.autosize) + a.Offset
   667  			if c.instoffset >= -BIG && c.instoffset < BIG {
   668  				return C_SACON
   669  			}
   670  			return C_LACON
   671  
   672  		case obj.NAME_PARAM:
   673  			if a.Reg == REGSP {
   674  				// unset base register for better printing, since
   675  				// a.Offset is still relative to pseudo-FP.
   676  				a.Reg = obj.REG_NONE
   677  			}
   678  			c.instoffset = int64(c.autosize) + a.Offset + c.ctxt.Arch.FixedFrameSize
   679  			if c.instoffset >= -BIG && c.instoffset < BIG {
   680  				return C_SACON
   681  			}
   682  			return C_LACON
   683  
   684  		default:
   685  			return C_GOK
   686  		}
   687  
   688  		if c.instoffset == 0 {
   689  			return C_ZCON
   690  		}
   691  		if c.instoffset >= 0 {
   692  			if c.instoffset <= 0x7fff {
   693  				return C_SCON
   694  			}
   695  			if c.instoffset <= 0xffff {
   696  				return C_ANDCON
   697  			}
   698  			if c.instoffset&0xffff == 0 && isuint32(uint64(c.instoffset)) { /* && ((instoffset & (1<<31)) == 0) */
   699  				return C_UCON
   700  			}
   701  			if isint32(c.instoffset) || isuint32(uint64(c.instoffset)) {
   702  				return C_LCON
   703  			}
   704  			return C_DCON
   705  		}
   706  
   707  		if c.instoffset >= -0x8000 {
   708  			return C_ADDCON
   709  		}
   710  		if c.instoffset&0xffff == 0 && isint32(c.instoffset) {
   711  			return C_UCON
   712  		}
   713  		if isint32(c.instoffset) {
   714  			return C_LCON
   715  		}
   716  		return C_DCON
   717  
   718  	case obj.TYPE_BRANCH:
   719  		return C_SBRA
   720  	}
   721  
   722  	return C_GOK
   723  }
   724  
   725  func (c *ctxtz) oplook(p *obj.Prog) *Optab {
   726  	// Return cached optab entry if available.
   727  	if p.Optab != 0 {
   728  		return &optab[p.Optab-1]
   729  	}
   730  	if len(p.RestArgs) > 3 {
   731  		c.ctxt.Diag("too many RestArgs: got %v, maximum is 3\n", len(p.RestArgs))
   732  		return nil
   733  	}
   734  
   735  	// Initialize classes for all arguments.
   736  	p.From.Class = int8(c.aclass(&p.From) + 1)
   737  	p.To.Class = int8(c.aclass(&p.To) + 1)
   738  	for i := range p.RestArgs {
   739  		p.RestArgs[i].Addr.Class = int8(c.aclass(&p.RestArgs[i].Addr) + 1)
   740  	}
   741  
   742  	// Mirrors the argument list in Optab.
   743  	args := [...]int8{
   744  		p.From.Class - 1,
   745  		C_NONE, // p.Reg
   746  		C_NONE, // p.RestArgs[0]
   747  		C_NONE, // p.RestArgs[1]
   748  		C_NONE, // p.RestArgs[2]
   749  		p.To.Class - 1,
   750  	}
   751  	// Fill in argument class for p.Reg.
   752  	switch {
   753  	case REG_R0 <= p.Reg && p.Reg <= REG_R15:
   754  		args[1] = C_REG
   755  	case REG_V0 <= p.Reg && p.Reg <= REG_V31:
   756  		args[1] = C_VREG
   757  	case REG_F0 <= p.Reg && p.Reg <= REG_F15:
   758  		args[1] = C_FREG
   759  	case REG_AR0 <= p.Reg && p.Reg <= REG_AR15:
   760  		args[1] = C_AREG
   761  	}
   762  	// Fill in argument classes for p.RestArgs.
   763  	for i, a := range p.RestArgs {
   764  		args[2+i] = a.Class - 1
   765  	}
   766  
   767  	// Lookup op in optab.
   768  	ops := oprange[p.As&obj.AMask]
   769  	cmp := [len(args)]*[C_NCLASS]bool{}
   770  	for i := range cmp {
   771  		cmp[i] = &xcmp[args[i]]
   772  	}
   773  	for i := range ops {
   774  		op := &ops[i]
   775  		if cmp[0][op.a1] && cmp[1][op.a2] &&
   776  			cmp[2][op.a3] && cmp[3][op.a4] &&
   777  			cmp[4][op.a5] && cmp[5][op.a6] {
   778  			p.Optab = uint16(cap(optab) - cap(ops) + i + 1)
   779  			return op
   780  		}
   781  	}
   782  
   783  	// Cannot find a case; abort.
   784  	s := ""
   785  	for _, a := range args {
   786  		s += fmt.Sprintf(" %v", DRconv(int(a)))
   787  	}
   788  	c.ctxt.Diag("illegal combination %v%v\n", p.As, s)
   789  	c.ctxt.Diag("prog: %v\n", p)
   790  	return nil
   791  }
   792  
   793  func cmp(a int, b int) bool {
   794  	if a == b {
   795  		return true
   796  	}
   797  	switch a {
   798  	case C_DCON:
   799  		if b == C_LCON {
   800  			return true
   801  		}
   802  		fallthrough
   803  	case C_LCON:
   804  		if b == C_ZCON || b == C_SCON || b == C_UCON || b == C_ADDCON || b == C_ANDCON {
   805  			return true
   806  		}
   807  
   808  	case C_ADDCON:
   809  		if b == C_ZCON || b == C_SCON {
   810  			return true
   811  		}
   812  
   813  	case C_ANDCON:
   814  		if b == C_ZCON || b == C_SCON {
   815  			return true
   816  		}
   817  
   818  	case C_UCON:
   819  		if b == C_ZCON || b == C_SCON {
   820  			return true
   821  		}
   822  
   823  	case C_SCON:
   824  		if b == C_ZCON {
   825  			return true
   826  		}
   827  
   828  	case C_LACON:
   829  		if b == C_SACON {
   830  			return true
   831  		}
   832  
   833  	case C_LBRA:
   834  		if b == C_SBRA {
   835  			return true
   836  		}
   837  
   838  	case C_LAUTO:
   839  		if b == C_SAUTO {
   840  			return true
   841  		}
   842  
   843  	case C_LOREG:
   844  		if b == C_ZOREG || b == C_SOREG {
   845  			return true
   846  		}
   847  
   848  	case C_SOREG:
   849  		if b == C_ZOREG {
   850  			return true
   851  		}
   852  
   853  	case C_ANY:
   854  		return true
   855  	}
   856  
   857  	return false
   858  }
   859  
   860  func ocmp(p1, p2 Optab) int {
   861  	if p1.as != p2.as {
   862  		return int(p1.as) - int(p2.as)
   863  	}
   864  	if p1.a1 != p2.a1 {
   865  		return int(p1.a1) - int(p2.a1)
   866  	}
   867  	if p1.a2 != p2.a2 {
   868  		return int(p1.a2) - int(p2.a2)
   869  	}
   870  	if p1.a3 != p2.a3 {
   871  		return int(p1.a3) - int(p2.a3)
   872  	}
   873  	if p1.a4 != p2.a4 {
   874  		return int(p1.a4) - int(p2.a4)
   875  	}
   876  	return 0
   877  }
   878  func opset(a, b obj.As) {
   879  	oprange[a&obj.AMask] = oprange[b&obj.AMask]
   880  }
   881  
   882  func buildop(ctxt *obj.Link) {
   883  	if oprange[AORW&obj.AMask] != nil {
   884  		// Already initialized; stop now.
   885  		// This happens in the cmd/asm tests,
   886  		// each of which re-initializes the arch.
   887  		return
   888  	}
   889  
   890  	for i := 0; i < C_NCLASS; i++ {
   891  		for n := 0; n < C_NCLASS; n++ {
   892  			if cmp(n, i) {
   893  				xcmp[i][n] = true
   894  			}
   895  		}
   896  	}
   897  	slices.SortFunc(optab, ocmp)
   898  	for i := 0; i < len(optab); i++ {
   899  		r := optab[i].as
   900  		start := i
   901  		for ; i+1 < len(optab); i++ {
   902  			if optab[i+1].as != r {
   903  				break
   904  			}
   905  		}
   906  		oprange[r&obj.AMask] = optab[start : i+1]
   907  
   908  		// opset() aliases optab ranges for similar instructions, to reduce the number of optabs in the array.
   909  		// oprange[] is used by oplook() to find the Optab entry that applies to a given Prog.
   910  		switch r {
   911  		case AADD:
   912  			opset(AADDC, r)
   913  			opset(AADDW, r)
   914  			opset(AADDE, r)
   915  			opset(AMULLD, r)
   916  			opset(AMULLW, r)
   917  		case ADIVW:
   918  			opset(ADIVD, r)
   919  			opset(ADIVDU, r)
   920  			opset(ADIVWU, r)
   921  			opset(AMODD, r)
   922  			opset(AMODDU, r)
   923  			opset(AMODW, r)
   924  			opset(AMODWU, r)
   925  		case AMULHD:
   926  			opset(AMULHDU, r)
   927  		case AMOVBZ:
   928  			opset(AMOVH, r)
   929  			opset(AMOVHZ, r)
   930  		case ALA:
   931  			opset(ALAY, r)
   932  		case AMVC:
   933  			opset(AMVCIN, r)
   934  			opset(ACLC, r)
   935  			opset(AXC, r)
   936  			opset(AOC, r)
   937  			opset(ANC, r)
   938  		case ASTCK:
   939  			opset(ASTCKC, r)
   940  			opset(ASTCKE, r)
   941  			opset(ASTCKF, r)
   942  		case ALAAG:
   943  			opset(ALAA, r)
   944  			opset(ALAAL, r)
   945  			opset(ALAALG, r)
   946  			opset(ALAN, r)
   947  			opset(ALANG, r)
   948  			opset(ALAX, r)
   949  			opset(ALAXG, r)
   950  			opset(ALAO, r)
   951  			opset(ALAOG, r)
   952  		case ASTMG:
   953  			opset(ASTMY, r)
   954  		case ALMG:
   955  			opset(ALMY, r)
   956  		case ABEQ:
   957  			opset(ABGE, r)
   958  			opset(ABGT, r)
   959  			opset(ABLE, r)
   960  			opset(ABLT, r)
   961  			opset(ABNE, r)
   962  			opset(ABVC, r)
   963  			opset(ABVS, r)
   964  			opset(ABLEU, r)
   965  			opset(ABLTU, r)
   966  		case ABR:
   967  			opset(ABL, r)
   968  		case ABC:
   969  			opset(ABCL, r)
   970  		case AFABS:
   971  			opset(AFNABS, r)
   972  			opset(ALPDFR, r)
   973  			opset(ALNDFR, r)
   974  			opset(AFNEG, r)
   975  			opset(AFNEGS, r)
   976  			opset(ALCDBR, r)
   977  			opset(ALEDBR, r)
   978  			opset(ALDEBR, r)
   979  			opset(AFSQRT, r)
   980  			opset(AFSQRTS, r)
   981  		case AFADD:
   982  			opset(AFADDS, r)
   983  			opset(AFDIV, r)
   984  			opset(AFDIVS, r)
   985  			opset(AFSUB, r)
   986  			opset(AFSUBS, r)
   987  		case AFMADD:
   988  			opset(AFMADDS, r)
   989  			opset(AFMSUB, r)
   990  			opset(AFMSUBS, r)
   991  		case AFMUL:
   992  			opset(AFMULS, r)
   993  		case AFCMPO:
   994  			opset(AFCMPU, r)
   995  			opset(ACEBR, r)
   996  		case AAND:
   997  			opset(AOR, r)
   998  			opset(AXOR, r)
   999  		case AANDW:
  1000  			opset(AORW, r)
  1001  			opset(AXORW, r)
  1002  		case ASLD:
  1003  			opset(ASRD, r)
  1004  			opset(ASLW, r)
  1005  			opset(ASRW, r)
  1006  			opset(ASRAD, r)
  1007  			opset(ASRAW, r)
  1008  			opset(ARLL, r)
  1009  			opset(ARLLG, r)
  1010  		case ARNSBG:
  1011  			opset(ARXSBG, r)
  1012  			opset(AROSBG, r)
  1013  			opset(ARNSBGT, r)
  1014  			opset(ARXSBGT, r)
  1015  			opset(AROSBGT, r)
  1016  			opset(ARISBG, r)
  1017  			opset(ARISBGN, r)
  1018  			opset(ARISBGZ, r)
  1019  			opset(ARISBGNZ, r)
  1020  			opset(ARISBHG, r)
  1021  			opset(ARISBLG, r)
  1022  			opset(ARISBHGZ, r)
  1023  			opset(ARISBLGZ, r)
  1024  		case ACSG:
  1025  			opset(ACS, r)
  1026  		case ASUB:
  1027  			opset(ASUBC, r)
  1028  			opset(ASUBE, r)
  1029  			opset(ASUBW, r)
  1030  		case ANEG:
  1031  			opset(ANEGW, r)
  1032  		case AFMOVD:
  1033  			opset(AFMOVS, r)
  1034  		case AMOVDBR:
  1035  			opset(AMOVWBR, r)
  1036  		case ACMP:
  1037  			opset(ACMPW, r)
  1038  		case ACMPU:
  1039  			opset(ACMPWU, r)
  1040  		case ATMHH:
  1041  			opset(ATMHL, r)
  1042  			opset(ATMLH, r)
  1043  			opset(ATMLL, r)
  1044  		case ACEFBRA:
  1045  			opset(ACDFBRA, r)
  1046  			opset(ACEGBRA, r)
  1047  			opset(ACDGBRA, r)
  1048  			opset(ACELFBR, r)
  1049  			opset(ACDLFBR, r)
  1050  			opset(ACELGBR, r)
  1051  			opset(ACDLGBR, r)
  1052  		case ACFEBRA:
  1053  			opset(ACFDBRA, r)
  1054  			opset(ACGEBRA, r)
  1055  			opset(ACGDBRA, r)
  1056  			opset(ACLFEBR, r)
  1057  			opset(ACLFDBR, r)
  1058  			opset(ACLGEBR, r)
  1059  			opset(ACLGDBR, r)
  1060  		case AFIEBR:
  1061  			opset(AFIDBR, r)
  1062  		case ACMPBEQ:
  1063  			opset(ACMPBGE, r)
  1064  			opset(ACMPBGT, r)
  1065  			opset(ACMPBLE, r)
  1066  			opset(ACMPBLT, r)
  1067  			opset(ACMPBNE, r)
  1068  		case ACMPUBEQ:
  1069  			opset(ACMPUBGE, r)
  1070  			opset(ACMPUBGT, r)
  1071  			opset(ACMPUBLE, r)
  1072  			opset(ACMPUBLT, r)
  1073  			opset(ACMPUBNE, r)
  1074  		case ACGRJ:
  1075  			opset(ACRJ, r)
  1076  		case ACLGRJ:
  1077  			opset(ACLRJ, r)
  1078  		case ACGIJ:
  1079  			opset(ACIJ, r)
  1080  		case ACLGIJ:
  1081  			opset(ACLIJ, r)
  1082  		case AMOVDEQ:
  1083  			opset(AMOVDGE, r)
  1084  			opset(AMOVDGT, r)
  1085  			opset(AMOVDLE, r)
  1086  			opset(AMOVDLT, r)
  1087  			opset(AMOVDNE, r)
  1088  		case ALOCGR:
  1089  			opset(ALOCR, r)
  1090  		case ALTDBR:
  1091  			opset(ALTEBR, r)
  1092  		case ATCDB:
  1093  			opset(ATCEB, r)
  1094  		case AVL:
  1095  			opset(AVLLEZB, r)
  1096  			opset(AVLLEZH, r)
  1097  			opset(AVLLEZF, r)
  1098  			opset(AVLLEZG, r)
  1099  			opset(AVLREPB, r)
  1100  			opset(AVLREPH, r)
  1101  			opset(AVLREPF, r)
  1102  			opset(AVLREPG, r)
  1103  		case AVLEG:
  1104  			opset(AVLBB, r)
  1105  			opset(AVLEB, r)
  1106  			opset(AVLEH, r)
  1107  			opset(AVLEF, r)
  1108  			opset(AVLEG, r)
  1109  			opset(AVLREP, r)
  1110  		case AVSTEG:
  1111  			opset(AVSTEB, r)
  1112  			opset(AVSTEH, r)
  1113  			opset(AVSTEF, r)
  1114  		case AVSCEG:
  1115  			opset(AVSCEF, r)
  1116  		case AVGEG:
  1117  			opset(AVGEF, r)
  1118  		case AVESLG:
  1119  			opset(AVESLB, r)
  1120  			opset(AVESLH, r)
  1121  			opset(AVESLF, r)
  1122  			opset(AVERLLB, r)
  1123  			opset(AVERLLH, r)
  1124  			opset(AVERLLF, r)
  1125  			opset(AVERLLG, r)
  1126  			opset(AVESRAB, r)
  1127  			opset(AVESRAH, r)
  1128  			opset(AVESRAF, r)
  1129  			opset(AVESRAG, r)
  1130  			opset(AVESRLB, r)
  1131  			opset(AVESRLH, r)
  1132  			opset(AVESRLF, r)
  1133  			opset(AVESRLG, r)
  1134  		case AVLGVG:
  1135  			opset(AVLGVB, r)
  1136  			opset(AVLGVH, r)
  1137  			opset(AVLGVF, r)
  1138  		case AVLVGG:
  1139  			opset(AVLVGB, r)
  1140  			opset(AVLVGH, r)
  1141  			opset(AVLVGF, r)
  1142  		case AVZERO:
  1143  			opset(AVONE, r)
  1144  		case AVREPIG:
  1145  			opset(AVREPIB, r)
  1146  			opset(AVREPIH, r)
  1147  			opset(AVREPIF, r)
  1148  		case AVLEIG:
  1149  			opset(AVLEIB, r)
  1150  			opset(AVLEIH, r)
  1151  			opset(AVLEIF, r)
  1152  		case AVGMG:
  1153  			opset(AVGMB, r)
  1154  			opset(AVGMH, r)
  1155  			opset(AVGMF, r)
  1156  		case AVREPG:
  1157  			opset(AVREPB, r)
  1158  			opset(AVREPH, r)
  1159  			opset(AVREPF, r)
  1160  		case AVERIMG:
  1161  			opset(AVERIMB, r)
  1162  			opset(AVERIMH, r)
  1163  			opset(AVERIMF, r)
  1164  		case AVFTCIDB:
  1165  			opset(AWFTCIDB, r)
  1166  		case AVLR:
  1167  			opset(AVUPHB, r)
  1168  			opset(AVUPHH, r)
  1169  			opset(AVUPHF, r)
  1170  			opset(AVUPLHB, r)
  1171  			opset(AVUPLHH, r)
  1172  			opset(AVUPLHF, r)
  1173  			opset(AVUPLB, r)
  1174  			opset(AVUPLHW, r)
  1175  			opset(AVUPLF, r)
  1176  			opset(AVUPLLB, r)
  1177  			opset(AVUPLLH, r)
  1178  			opset(AVUPLLF, r)
  1179  			opset(AVCLZB, r)
  1180  			opset(AVCLZH, r)
  1181  			opset(AVCLZF, r)
  1182  			opset(AVCLZG, r)
  1183  			opset(AVCTZB, r)
  1184  			opset(AVCTZH, r)
  1185  			opset(AVCTZF, r)
  1186  			opset(AVCTZG, r)
  1187  			opset(AVLDEB, r)
  1188  			opset(AWLDEB, r)
  1189  			opset(AVFLCDB, r)
  1190  			opset(AWFLCDB, r)
  1191  			opset(AVFLNDB, r)
  1192  			opset(AWFLNDB, r)
  1193  			opset(AVFLPDB, r)
  1194  			opset(AWFLPDB, r)
  1195  			opset(AVFSQDB, r)
  1196  			opset(AWFSQDB, r)
  1197  			opset(AVISTRB, r)
  1198  			opset(AVISTRH, r)
  1199  			opset(AVISTRF, r)
  1200  			opset(AVISTRBS, r)
  1201  			opset(AVISTRHS, r)
  1202  			opset(AVISTRFS, r)
  1203  			opset(AVLCB, r)
  1204  			opset(AVLCH, r)
  1205  			opset(AVLCF, r)
  1206  			opset(AVLCG, r)
  1207  			opset(AVLPB, r)
  1208  			opset(AVLPH, r)
  1209  			opset(AVLPF, r)
  1210  			opset(AVLPG, r)
  1211  			opset(AVPOPCT, r)
  1212  			opset(AVSEGB, r)
  1213  			opset(AVSEGH, r)
  1214  			opset(AVSEGF, r)
  1215  		case AVECG:
  1216  			opset(AVECB, r)
  1217  			opset(AVECH, r)
  1218  			opset(AVECF, r)
  1219  			opset(AVECLB, r)
  1220  			opset(AVECLH, r)
  1221  			opset(AVECLF, r)
  1222  			opset(AVECLG, r)
  1223  			opset(AWFCDB, r)
  1224  			opset(AWFKDB, r)
  1225  		case AVCEQG:
  1226  			opset(AVCEQB, r)
  1227  			opset(AVCEQH, r)
  1228  			opset(AVCEQF, r)
  1229  			opset(AVCEQBS, r)
  1230  			opset(AVCEQHS, r)
  1231  			opset(AVCEQFS, r)
  1232  			opset(AVCEQGS, r)
  1233  			opset(AVCHB, r)
  1234  			opset(AVCHH, r)
  1235  			opset(AVCHF, r)
  1236  			opset(AVCHG, r)
  1237  			opset(AVCHBS, r)
  1238  			opset(AVCHHS, r)
  1239  			opset(AVCHFS, r)
  1240  			opset(AVCHGS, r)
  1241  			opset(AVCHLB, r)
  1242  			opset(AVCHLH, r)
  1243  			opset(AVCHLF, r)
  1244  			opset(AVCHLG, r)
  1245  			opset(AVCHLBS, r)
  1246  			opset(AVCHLHS, r)
  1247  			opset(AVCHLFS, r)
  1248  			opset(AVCHLGS, r)
  1249  		case AVFAEF:
  1250  			opset(AVFAEB, r)
  1251  			opset(AVFAEH, r)
  1252  			opset(AVFAEBS, r)
  1253  			opset(AVFAEHS, r)
  1254  			opset(AVFAEFS, r)
  1255  			opset(AVFAEZB, r)
  1256  			opset(AVFAEZH, r)
  1257  			opset(AVFAEZF, r)
  1258  			opset(AVFAEZBS, r)
  1259  			opset(AVFAEZHS, r)
  1260  			opset(AVFAEZFS, r)
  1261  			opset(AVFEEB, r)
  1262  			opset(AVFEEH, r)
  1263  			opset(AVFEEF, r)
  1264  			opset(AVFEEBS, r)
  1265  			opset(AVFEEHS, r)
  1266  			opset(AVFEEFS, r)
  1267  			opset(AVFEEZB, r)
  1268  			opset(AVFEEZH, r)
  1269  			opset(AVFEEZF, r)
  1270  			opset(AVFEEZBS, r)
  1271  			opset(AVFEEZHS, r)
  1272  			opset(AVFEEZFS, r)
  1273  			opset(AVFENEB, r)
  1274  			opset(AVFENEH, r)
  1275  			opset(AVFENEF, r)
  1276  			opset(AVFENEBS, r)
  1277  			opset(AVFENEHS, r)
  1278  			opset(AVFENEFS, r)
  1279  			opset(AVFENEZB, r)
  1280  			opset(AVFENEZH, r)
  1281  			opset(AVFENEZF, r)
  1282  			opset(AVFENEZBS, r)
  1283  			opset(AVFENEZHS, r)
  1284  			opset(AVFENEZFS, r)
  1285  		case AVPKSG:
  1286  			opset(AVPKSH, r)
  1287  			opset(AVPKSF, r)
  1288  			opset(AVPKSHS, r)
  1289  			opset(AVPKSFS, r)
  1290  			opset(AVPKSGS, r)
  1291  			opset(AVPKLSH, r)
  1292  			opset(AVPKLSF, r)
  1293  			opset(AVPKLSG, r)
  1294  			opset(AVPKLSHS, r)
  1295  			opset(AVPKLSFS, r)
  1296  			opset(AVPKLSGS, r)
  1297  		case AVAQ:
  1298  			opset(AVAB, r)
  1299  			opset(AVAH, r)
  1300  			opset(AVAF, r)
  1301  			opset(AVAG, r)
  1302  			opset(AVACCB, r)
  1303  			opset(AVACCH, r)
  1304  			opset(AVACCF, r)
  1305  			opset(AVACCG, r)
  1306  			opset(AVACCQ, r)
  1307  			opset(AVN, r)
  1308  			opset(AVNC, r)
  1309  			opset(AVAVGB, r)
  1310  			opset(AVAVGH, r)
  1311  			opset(AVAVGF, r)
  1312  			opset(AVAVGG, r)
  1313  			opset(AVAVGLB, r)
  1314  			opset(AVAVGLH, r)
  1315  			opset(AVAVGLF, r)
  1316  			opset(AVAVGLG, r)
  1317  			opset(AVCKSM, r)
  1318  			opset(AVX, r)
  1319  			opset(AVFADB, r)
  1320  			opset(AWFADB, r)
  1321  			opset(AVFCEDB, r)
  1322  			opset(AVFCEDBS, r)
  1323  			opset(AWFCEDB, r)
  1324  			opset(AWFCEDBS, r)
  1325  			opset(AVFCHDB, r)
  1326  			opset(AVFCHDBS, r)
  1327  			opset(AWFCHDB, r)
  1328  			opset(AWFCHDBS, r)
  1329  			opset(AVFCHEDB, r)
  1330  			opset(AVFCHEDBS, r)
  1331  			opset(AWFCHEDB, r)
  1332  			opset(AWFCHEDBS, r)
  1333  			opset(AVFMDB, r)
  1334  			opset(AWFMDB, r)
  1335  			opset(AVGFMB, r)
  1336  			opset(AVGFMH, r)
  1337  			opset(AVGFMF, r)
  1338  			opset(AVGFMG, r)
  1339  			opset(AVMXB, r)
  1340  			opset(AVMXH, r)
  1341  			opset(AVMXF, r)
  1342  			opset(AVMXG, r)
  1343  			opset(AVMXLB, r)
  1344  			opset(AVMXLH, r)
  1345  			opset(AVMXLF, r)
  1346  			opset(AVMXLG, r)
  1347  			opset(AVMNB, r)
  1348  			opset(AVMNH, r)
  1349  			opset(AVMNF, r)
  1350  			opset(AVMNG, r)
  1351  			opset(AVMNLB, r)
  1352  			opset(AVMNLH, r)
  1353  			opset(AVMNLF, r)
  1354  			opset(AVMNLG, r)
  1355  			opset(AVMRHB, r)
  1356  			opset(AVMRHH, r)
  1357  			opset(AVMRHF, r)
  1358  			opset(AVMRHG, r)
  1359  			opset(AVMRLB, r)
  1360  			opset(AVMRLH, r)
  1361  			opset(AVMRLF, r)
  1362  			opset(AVMRLG, r)
  1363  			opset(AVMEB, r)
  1364  			opset(AVMEH, r)
  1365  			opset(AVMEF, r)
  1366  			opset(AVMLEB, r)
  1367  			opset(AVMLEH, r)
  1368  			opset(AVMLEF, r)
  1369  			opset(AVMOB, r)
  1370  			opset(AVMOH, r)
  1371  			opset(AVMOF, r)
  1372  			opset(AVMLOB, r)
  1373  			opset(AVMLOH, r)
  1374  			opset(AVMLOF, r)
  1375  			opset(AVMHB, r)
  1376  			opset(AVMHH, r)
  1377  			opset(AVMHF, r)
  1378  			opset(AVMLHB, r)
  1379  			opset(AVMLHH, r)
  1380  			opset(AVMLHF, r)
  1381  			opset(AVMLH, r)
  1382  			opset(AVMLHW, r)
  1383  			opset(AVMLF, r)
  1384  			opset(AVNO, r)
  1385  			opset(AVO, r)
  1386  			opset(AVPKH, r)
  1387  			opset(AVPKF, r)
  1388  			opset(AVPKG, r)
  1389  			opset(AVSUMGH, r)
  1390  			opset(AVSUMGF, r)
  1391  			opset(AVSUMQF, r)
  1392  			opset(AVSUMQG, r)
  1393  			opset(AVSUMB, r)
  1394  			opset(AVSUMH, r)
  1395  		case AVERLLVG:
  1396  			opset(AVERLLVB, r)
  1397  			opset(AVERLLVH, r)
  1398  			opset(AVERLLVF, r)
  1399  			opset(AVESLVB, r)
  1400  			opset(AVESLVH, r)
  1401  			opset(AVESLVF, r)
  1402  			opset(AVESLVG, r)
  1403  			opset(AVESRAVB, r)
  1404  			opset(AVESRAVH, r)
  1405  			opset(AVESRAVF, r)
  1406  			opset(AVESRAVG, r)
  1407  			opset(AVESRLVB, r)
  1408  			opset(AVESRLVH, r)
  1409  			opset(AVESRLVF, r)
  1410  			opset(AVESRLVG, r)
  1411  			opset(AVFDDB, r)
  1412  			opset(AWFDDB, r)
  1413  			opset(AVFSDB, r)
  1414  			opset(AWFSDB, r)
  1415  			opset(AVSL, r)
  1416  			opset(AVSLB, r)
  1417  			opset(AVSRA, r)
  1418  			opset(AVSRAB, r)
  1419  			opset(AVSRL, r)
  1420  			opset(AVSRLB, r)
  1421  			opset(AVSB, r)
  1422  			opset(AVSH, r)
  1423  			opset(AVSF, r)
  1424  			opset(AVSG, r)
  1425  			opset(AVSQ, r)
  1426  			opset(AVSCBIB, r)
  1427  			opset(AVSCBIH, r)
  1428  			opset(AVSCBIF, r)
  1429  			opset(AVSCBIG, r)
  1430  			opset(AVSCBIQ, r)
  1431  		case AVACQ:
  1432  			opset(AVACCCQ, r)
  1433  			opset(AVGFMAB, r)
  1434  			opset(AVGFMAH, r)
  1435  			opset(AVGFMAF, r)
  1436  			opset(AVGFMAG, r)
  1437  			opset(AVMALB, r)
  1438  			opset(AVMALHW, r)
  1439  			opset(AVMALF, r)
  1440  			opset(AVMAHB, r)
  1441  			opset(AVMAHH, r)
  1442  			opset(AVMAHF, r)
  1443  			opset(AVMALHB, r)
  1444  			opset(AVMALHH, r)
  1445  			opset(AVMALHF, r)
  1446  			opset(AVMAEB, r)
  1447  			opset(AVMAEH, r)
  1448  			opset(AVMAEF, r)
  1449  			opset(AVMALEB, r)
  1450  			opset(AVMALEH, r)
  1451  			opset(AVMALEF, r)
  1452  			opset(AVMAOB, r)
  1453  			opset(AVMAOH, r)
  1454  			opset(AVMAOF, r)
  1455  			opset(AVMALOB, r)
  1456  			opset(AVMALOH, r)
  1457  			opset(AVMALOF, r)
  1458  			opset(AVSTRC, r)
  1459  			opset(AVSTRCB, r)
  1460  			opset(AVSTRCH, r)
  1461  			opset(AVSTRCF, r)
  1462  			opset(AVSTRCBS, r)
  1463  			opset(AVSTRCHS, r)
  1464  			opset(AVSTRCFS, r)
  1465  			opset(AVSTRCZB, r)
  1466  			opset(AVSTRCZH, r)
  1467  			opset(AVSTRCZF, r)
  1468  			opset(AVSTRCZBS, r)
  1469  			opset(AVSTRCZHS, r)
  1470  			opset(AVSTRCZFS, r)
  1471  			opset(AVSBCBIQ, r)
  1472  			opset(AVSBIQ, r)
  1473  			opset(AVMSLG, r)
  1474  			opset(AVMSLEG, r)
  1475  			opset(AVMSLOG, r)
  1476  			opset(AVMSLEOG, r)
  1477  		case AVSEL:
  1478  			opset(AVFMADB, r)
  1479  			opset(AWFMADB, r)
  1480  			opset(AVFMSDB, r)
  1481  			opset(AWFMSDB, r)
  1482  			opset(AVPERM, r)
  1483  		case AKM:
  1484  			opset(AKMC, r)
  1485  			opset(AKLMD, r)
  1486  			opset(AKIMD, r)
  1487  		case AKMA:
  1488  			opset(AKMCTR, r)
  1489  		}
  1490  	}
  1491  }
  1492  
  1493  const (
  1494  	op_A       uint32 = 0x5A00 // FORMAT_RX1        ADD (32)
  1495  	op_AD      uint32 = 0x6A00 // FORMAT_RX1        ADD NORMALIZED (long HFP)
  1496  	op_ADB     uint32 = 0xED1A // FORMAT_RXE        ADD (long BFP)
  1497  	op_ADBR    uint32 = 0xB31A // FORMAT_RRE        ADD (long BFP)
  1498  	op_ADR     uint32 = 0x2A00 // FORMAT_RR         ADD NORMALIZED (long HFP)
  1499  	op_ADTR    uint32 = 0xB3D2 // FORMAT_RRF1       ADD (long DFP)
  1500  	op_ADTRA   uint32 = 0xB3D2 // FORMAT_RRF1       ADD (long DFP)
  1501  	op_AE      uint32 = 0x7A00 // FORMAT_RX1        ADD NORMALIZED (short HFP)
  1502  	op_AEB     uint32 = 0xED0A // FORMAT_RXE        ADD (short BFP)
  1503  	op_AEBR    uint32 = 0xB30A // FORMAT_RRE        ADD (short BFP)
  1504  	op_AER     uint32 = 0x3A00 // FORMAT_RR         ADD NORMALIZED (short HFP)
  1505  	op_AFI     uint32 = 0xC209 // FORMAT_RIL1       ADD IMMEDIATE (32)
  1506  	op_AG      uint32 = 0xE308 // FORMAT_RXY1       ADD (64)
  1507  	op_AGF     uint32 = 0xE318 // FORMAT_RXY1       ADD (64<-32)
  1508  	op_AGFI    uint32 = 0xC208 // FORMAT_RIL1       ADD IMMEDIATE (64<-32)
  1509  	op_AGFR    uint32 = 0xB918 // FORMAT_RRE        ADD (64<-32)
  1510  	op_AGHI    uint32 = 0xA70B // FORMAT_RI1        ADD HALFWORD IMMEDIATE (64)
  1511  	op_AGHIK   uint32 = 0xECD9 // FORMAT_RIE4       ADD IMMEDIATE (64<-16)
  1512  	op_AGR     uint32 = 0xB908 // FORMAT_RRE        ADD (64)
  1513  	op_AGRK    uint32 = 0xB9E8 // FORMAT_RRF1       ADD (64)
  1514  	op_AGSI    uint32 = 0xEB7A // FORMAT_SIY        ADD IMMEDIATE (64<-8)
  1515  	op_AH      uint32 = 0x4A00 // FORMAT_RX1        ADD HALFWORD
  1516  	op_AHHHR   uint32 = 0xB9C8 // FORMAT_RRF1       ADD HIGH (32)
  1517  	op_AHHLR   uint32 = 0xB9D8 // FORMAT_RRF1       ADD HIGH (32)
  1518  	op_AHI     uint32 = 0xA70A // FORMAT_RI1        ADD HALFWORD IMMEDIATE (32)
  1519  	op_AHIK    uint32 = 0xECD8 // FORMAT_RIE4       ADD IMMEDIATE (32<-16)
  1520  	op_AHY     uint32 = 0xE37A // FORMAT_RXY1       ADD HALFWORD
  1521  	op_AIH     uint32 = 0xCC08 // FORMAT_RIL1       ADD IMMEDIATE HIGH (32)
  1522  	op_AL      uint32 = 0x5E00 // FORMAT_RX1        ADD LOGICAL (32)
  1523  	op_ALC     uint32 = 0xE398 // FORMAT_RXY1       ADD LOGICAL WITH CARRY (32)
  1524  	op_ALCG    uint32 = 0xE388 // FORMAT_RXY1       ADD LOGICAL WITH CARRY (64)
  1525  	op_ALCGR   uint32 = 0xB988 // FORMAT_RRE        ADD LOGICAL WITH CARRY (64)
  1526  	op_ALCR    uint32 = 0xB998 // FORMAT_RRE        ADD LOGICAL WITH CARRY (32)
  1527  	op_ALFI    uint32 = 0xC20B // FORMAT_RIL1       ADD LOGICAL IMMEDIATE (32)
  1528  	op_ALG     uint32 = 0xE30A // FORMAT_RXY1       ADD LOGICAL (64)
  1529  	op_ALGF    uint32 = 0xE31A // FORMAT_RXY1       ADD LOGICAL (64<-32)
  1530  	op_ALGFI   uint32 = 0xC20A // FORMAT_RIL1       ADD LOGICAL IMMEDIATE (64<-32)
  1531  	op_ALGFR   uint32 = 0xB91A // FORMAT_RRE        ADD LOGICAL (64<-32)
  1532  	op_ALGHSIK uint32 = 0xECDB // FORMAT_RIE4       ADD LOGICAL WITH SIGNED IMMEDIATE (64<-16)
  1533  	op_ALGR    uint32 = 0xB90A // FORMAT_RRE        ADD LOGICAL (64)
  1534  	op_ALGRK   uint32 = 0xB9EA // FORMAT_RRF1       ADD LOGICAL (64)
  1535  	op_ALGSI   uint32 = 0xEB7E // FORMAT_SIY        ADD LOGICAL WITH SIGNED IMMEDIATE (64<-8)
  1536  	op_ALHHHR  uint32 = 0xB9CA // FORMAT_RRF1       ADD LOGICAL HIGH (32)
  1537  	op_ALHHLR  uint32 = 0xB9DA // FORMAT_RRF1       ADD LOGICAL HIGH (32)
  1538  	op_ALHSIK  uint32 = 0xECDA // FORMAT_RIE4       ADD LOGICAL WITH SIGNED IMMEDIATE (32<-16)
  1539  	op_ALR     uint32 = 0x1E00 // FORMAT_RR         ADD LOGICAL (32)
  1540  	op_ALRK    uint32 = 0xB9FA // FORMAT_RRF1       ADD LOGICAL (32)
  1541  	op_ALSI    uint32 = 0xEB6E // FORMAT_SIY        ADD LOGICAL WITH SIGNED IMMEDIATE (32<-8)
  1542  	op_ALSIH   uint32 = 0xCC0A // FORMAT_RIL1       ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)
  1543  	op_ALSIHN  uint32 = 0xCC0B // FORMAT_RIL1       ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)
  1544  	op_ALY     uint32 = 0xE35E // FORMAT_RXY1       ADD LOGICAL (32)
  1545  	op_AP      uint32 = 0xFA00 // FORMAT_SS2        ADD DECIMAL
  1546  	op_AR      uint32 = 0x1A00 // FORMAT_RR         ADD (32)
  1547  	op_ARK     uint32 = 0xB9F8 // FORMAT_RRF1       ADD (32)
  1548  	op_ASI     uint32 = 0xEB6A // FORMAT_SIY        ADD IMMEDIATE (32<-8)
  1549  	op_AU      uint32 = 0x7E00 // FORMAT_RX1        ADD UNNORMALIZED (short HFP)
  1550  	op_AUR     uint32 = 0x3E00 // FORMAT_RR         ADD UNNORMALIZED (short HFP)
  1551  	op_AW      uint32 = 0x6E00 // FORMAT_RX1        ADD UNNORMALIZED (long HFP)
  1552  	op_AWR     uint32 = 0x2E00 // FORMAT_RR         ADD UNNORMALIZED (long HFP)
  1553  	op_AXBR    uint32 = 0xB34A // FORMAT_RRE        ADD (extended BFP)
  1554  	op_AXR     uint32 = 0x3600 // FORMAT_RR         ADD NORMALIZED (extended HFP)
  1555  	op_AXTR    uint32 = 0xB3DA // FORMAT_RRF1       ADD (extended DFP)
  1556  	op_AXTRA   uint32 = 0xB3DA // FORMAT_RRF1       ADD (extended DFP)
  1557  	op_AY      uint32 = 0xE35A // FORMAT_RXY1       ADD (32)
  1558  	op_BAKR    uint32 = 0xB240 // FORMAT_RRE        BRANCH AND STACK
  1559  	op_BAL     uint32 = 0x4500 // FORMAT_RX1        BRANCH AND LINK
  1560  	op_BALR    uint32 = 0x0500 // FORMAT_RR         BRANCH AND LINK
  1561  	op_BAS     uint32 = 0x4D00 // FORMAT_RX1        BRANCH AND SAVE
  1562  	op_BASR    uint32 = 0x0D00 // FORMAT_RR         BRANCH AND SAVE
  1563  	op_BASSM   uint32 = 0x0C00 // FORMAT_RR         BRANCH AND SAVE AND SET MODE
  1564  	op_BC      uint32 = 0x4700 // FORMAT_RX2        BRANCH ON CONDITION
  1565  	op_BCR     uint32 = 0x0700 // FORMAT_RR         BRANCH ON CONDITION
  1566  	op_BCT     uint32 = 0x4600 // FORMAT_RX1        BRANCH ON COUNT (32)
  1567  	op_BCTG    uint32 = 0xE346 // FORMAT_RXY1       BRANCH ON COUNT (64)
  1568  	op_BCTGR   uint32 = 0xB946 // FORMAT_RRE        BRANCH ON COUNT (64)
  1569  	op_BCTR    uint32 = 0x0600 // FORMAT_RR         BRANCH ON COUNT (32)
  1570  	op_BPP     uint32 = 0xC700 // FORMAT_SMI        BRANCH PREDICTION PRELOAD
  1571  	op_BPRP    uint32 = 0xC500 // FORMAT_MII        BRANCH PREDICTION RELATIVE PRELOAD
  1572  	op_BRAS    uint32 = 0xA705 // FORMAT_RI2        BRANCH RELATIVE AND SAVE
  1573  	op_BRASL   uint32 = 0xC005 // FORMAT_RIL2       BRANCH RELATIVE AND SAVE LONG
  1574  	op_BRC     uint32 = 0xA704 // FORMAT_RI3        BRANCH RELATIVE ON CONDITION
  1575  	op_BRCL    uint32 = 0xC004 // FORMAT_RIL3       BRANCH RELATIVE ON CONDITION LONG
  1576  	op_BRCT    uint32 = 0xA706 // FORMAT_RI2        BRANCH RELATIVE ON COUNT (32)
  1577  	op_BRCTG   uint32 = 0xA707 // FORMAT_RI2        BRANCH RELATIVE ON COUNT (64)
  1578  	op_BRCTH   uint32 = 0xCC06 // FORMAT_RIL2       BRANCH RELATIVE ON COUNT HIGH (32)
  1579  	op_BRXH    uint32 = 0x8400 // FORMAT_RSI        BRANCH RELATIVE ON INDEX HIGH (32)
  1580  	op_BRXHG   uint32 = 0xEC44 // FORMAT_RIE5       BRANCH RELATIVE ON INDEX HIGH (64)
  1581  	op_BRXLE   uint32 = 0x8500 // FORMAT_RSI        BRANCH RELATIVE ON INDEX LOW OR EQ. (32)
  1582  	op_BRXLG   uint32 = 0xEC45 // FORMAT_RIE5       BRANCH RELATIVE ON INDEX LOW OR EQ. (64)
  1583  	op_BSA     uint32 = 0xB25A // FORMAT_RRE        BRANCH AND SET AUTHORITY
  1584  	op_BSG     uint32 = 0xB258 // FORMAT_RRE        BRANCH IN SUBSPACE GROUP
  1585  	op_BSM     uint32 = 0x0B00 // FORMAT_RR         BRANCH AND SET MODE
  1586  	op_BXH     uint32 = 0x8600 // FORMAT_RS1        BRANCH ON INDEX HIGH (32)
  1587  	op_BXHG    uint32 = 0xEB44 // FORMAT_RSY1       BRANCH ON INDEX HIGH (64)
  1588  	op_BXLE    uint32 = 0x8700 // FORMAT_RS1        BRANCH ON INDEX LOW OR EQUAL (32)
  1589  	op_BXLEG   uint32 = 0xEB45 // FORMAT_RSY1       BRANCH ON INDEX LOW OR EQUAL (64)
  1590  	op_C       uint32 = 0x5900 // FORMAT_RX1        COMPARE (32)
  1591  	op_CD      uint32 = 0x6900 // FORMAT_RX1        COMPARE (long HFP)
  1592  	op_CDB     uint32 = 0xED19 // FORMAT_RXE        COMPARE (long BFP)
  1593  	op_CDBR    uint32 = 0xB319 // FORMAT_RRE        COMPARE (long BFP)
  1594  	op_CDFBR   uint32 = 0xB395 // FORMAT_RRE        CONVERT FROM FIXED (32 to long BFP)
  1595  	op_CDFBRA  uint32 = 0xB395 // FORMAT_RRF5       CONVERT FROM FIXED (32 to long BFP)
  1596  	op_CDFR    uint32 = 0xB3B5 // FORMAT_RRE        CONVERT FROM FIXED (32 to long HFP)
  1597  	op_CDFTR   uint32 = 0xB951 // FORMAT_RRE        CONVERT FROM FIXED (32 to long DFP)
  1598  	op_CDGBR   uint32 = 0xB3A5 // FORMAT_RRE        CONVERT FROM FIXED (64 to long BFP)
  1599  	op_CDGBRA  uint32 = 0xB3A5 // FORMAT_RRF5       CONVERT FROM FIXED (64 to long BFP)
  1600  	op_CDGR    uint32 = 0xB3C5 // FORMAT_RRE        CONVERT FROM FIXED (64 to long HFP)
  1601  	op_CDGTR   uint32 = 0xB3F1 // FORMAT_RRE        CONVERT FROM FIXED (64 to long DFP)
  1602  	op_CDGTRA  uint32 = 0xB3F1 // FORMAT_RRF5       CONVERT FROM FIXED (64 to long DFP)
  1603  	op_CDLFBR  uint32 = 0xB391 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to long BFP)
  1604  	op_CDLFTR  uint32 = 0xB953 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to long DFP)
  1605  	op_CDLGBR  uint32 = 0xB3A1 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to long BFP)
  1606  	op_CDLGTR  uint32 = 0xB952 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to long DFP)
  1607  	op_CDR     uint32 = 0x2900 // FORMAT_RR         COMPARE (long HFP)
  1608  	op_CDS     uint32 = 0xBB00 // FORMAT_RS1        COMPARE DOUBLE AND SWAP (32)
  1609  	op_CDSG    uint32 = 0xEB3E // FORMAT_RSY1       COMPARE DOUBLE AND SWAP (64)
  1610  	op_CDSTR   uint32 = 0xB3F3 // FORMAT_RRE        CONVERT FROM SIGNED PACKED (64 to long DFP)
  1611  	op_CDSY    uint32 = 0xEB31 // FORMAT_RSY1       COMPARE DOUBLE AND SWAP (32)
  1612  	op_CDTR    uint32 = 0xB3E4 // FORMAT_RRE        COMPARE (long DFP)
  1613  	op_CDUTR   uint32 = 0xB3F2 // FORMAT_RRE        CONVERT FROM UNSIGNED PACKED (64 to long DFP)
  1614  	op_CDZT    uint32 = 0xEDAA // FORMAT_RSL        CONVERT FROM ZONED (to long DFP)
  1615  	op_CE      uint32 = 0x7900 // FORMAT_RX1        COMPARE (short HFP)
  1616  	op_CEB     uint32 = 0xED09 // FORMAT_RXE        COMPARE (short BFP)
  1617  	op_CEBR    uint32 = 0xB309 // FORMAT_RRE        COMPARE (short BFP)
  1618  	op_CEDTR   uint32 = 0xB3F4 // FORMAT_RRE        COMPARE BIASED EXPONENT (long DFP)
  1619  	op_CEFBR   uint32 = 0xB394 // FORMAT_RRE        CONVERT FROM FIXED (32 to short BFP)
  1620  	op_CEFBRA  uint32 = 0xB394 // FORMAT_RRF5       CONVERT FROM FIXED (32 to short BFP)
  1621  	op_CEFR    uint32 = 0xB3B4 // FORMAT_RRE        CONVERT FROM FIXED (32 to short HFP)
  1622  	op_CEGBR   uint32 = 0xB3A4 // FORMAT_RRE        CONVERT FROM FIXED (64 to short BFP)
  1623  	op_CEGBRA  uint32 = 0xB3A4 // FORMAT_RRF5       CONVERT FROM FIXED (64 to short BFP)
  1624  	op_CEGR    uint32 = 0xB3C4 // FORMAT_RRE        CONVERT FROM FIXED (64 to short HFP)
  1625  	op_CELFBR  uint32 = 0xB390 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to short BFP)
  1626  	op_CELGBR  uint32 = 0xB3A0 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to short BFP)
  1627  	op_CER     uint32 = 0x3900 // FORMAT_RR         COMPARE (short HFP)
  1628  	op_CEXTR   uint32 = 0xB3FC // FORMAT_RRE        COMPARE BIASED EXPONENT (extended DFP)
  1629  	op_CFC     uint32 = 0xB21A // FORMAT_S          COMPARE AND FORM CODEWORD
  1630  	op_CFDBR   uint32 = 0xB399 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 32)
  1631  	op_CFDBRA  uint32 = 0xB399 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 32)
  1632  	op_CFDR    uint32 = 0xB3B9 // FORMAT_RRF5       CONVERT TO FIXED (long HFP to 32)
  1633  	op_CFDTR   uint32 = 0xB941 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 32)
  1634  	op_CFEBR   uint32 = 0xB398 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 32)
  1635  	op_CFEBRA  uint32 = 0xB398 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 32)
  1636  	op_CFER    uint32 = 0xB3B8 // FORMAT_RRF5       CONVERT TO FIXED (short HFP to 32)
  1637  	op_CFI     uint32 = 0xC20D // FORMAT_RIL1       COMPARE IMMEDIATE (32)
  1638  	op_CFXBR   uint32 = 0xB39A // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 32)
  1639  	op_CFXBRA  uint32 = 0xB39A // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 32)
  1640  	op_CFXR    uint32 = 0xB3BA // FORMAT_RRF5       CONVERT TO FIXED (extended HFP to 32)
  1641  	op_CFXTR   uint32 = 0xB949 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 32)
  1642  	op_CG      uint32 = 0xE320 // FORMAT_RXY1       COMPARE (64)
  1643  	op_CGDBR   uint32 = 0xB3A9 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 64)
  1644  	op_CGDBRA  uint32 = 0xB3A9 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 64)
  1645  	op_CGDR    uint32 = 0xB3C9 // FORMAT_RRF5       CONVERT TO FIXED (long HFP to 64)
  1646  	op_CGDTR   uint32 = 0xB3E1 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 64)
  1647  	op_CGDTRA  uint32 = 0xB3E1 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 64)
  1648  	op_CGEBR   uint32 = 0xB3A8 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 64)
  1649  	op_CGEBRA  uint32 = 0xB3A8 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 64)
  1650  	op_CGER    uint32 = 0xB3C8 // FORMAT_RRF5       CONVERT TO FIXED (short HFP to 64)
  1651  	op_CGF     uint32 = 0xE330 // FORMAT_RXY1       COMPARE (64<-32)
  1652  	op_CGFI    uint32 = 0xC20C // FORMAT_RIL1       COMPARE IMMEDIATE (64<-32)
  1653  	op_CGFR    uint32 = 0xB930 // FORMAT_RRE        COMPARE (64<-32)
  1654  	op_CGFRL   uint32 = 0xC60C // FORMAT_RIL2       COMPARE RELATIVE LONG (64<-32)
  1655  	op_CGH     uint32 = 0xE334 // FORMAT_RXY1       COMPARE HALFWORD (64<-16)
  1656  	op_CGHI    uint32 = 0xA70F // FORMAT_RI1        COMPARE HALFWORD IMMEDIATE (64<-16)
  1657  	op_CGHRL   uint32 = 0xC604 // FORMAT_RIL2       COMPARE HALFWORD RELATIVE LONG (64<-16)
  1658  	op_CGHSI   uint32 = 0xE558 // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (64<-16)
  1659  	op_CGIB    uint32 = 0xECFC // FORMAT_RIS        COMPARE IMMEDIATE AND BRANCH (64<-8)
  1660  	op_CGIJ    uint32 = 0xEC7C // FORMAT_RIE3       COMPARE IMMEDIATE AND BRANCH RELATIVE (64<-8)
  1661  	op_CGIT    uint32 = 0xEC70 // FORMAT_RIE1       COMPARE IMMEDIATE AND TRAP (64<-16)
  1662  	op_CGR     uint32 = 0xB920 // FORMAT_RRE        COMPARE (64)
  1663  	op_CGRB    uint32 = 0xECE4 // FORMAT_RRS        COMPARE AND BRANCH (64)
  1664  	op_CGRJ    uint32 = 0xEC64 // FORMAT_RIE2       COMPARE AND BRANCH RELATIVE (64)
  1665  	op_CGRL    uint32 = 0xC608 // FORMAT_RIL2       COMPARE RELATIVE LONG (64)
  1666  	op_CGRT    uint32 = 0xB960 // FORMAT_RRF3       COMPARE AND TRAP (64)
  1667  	op_CGXBR   uint32 = 0xB3AA // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 64)
  1668  	op_CGXBRA  uint32 = 0xB3AA // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 64)
  1669  	op_CGXR    uint32 = 0xB3CA // FORMAT_RRF5       CONVERT TO FIXED (extended HFP to 64)
  1670  	op_CGXTR   uint32 = 0xB3E9 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 64)
  1671  	op_CGXTRA  uint32 = 0xB3E9 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 64)
  1672  	op_CH      uint32 = 0x4900 // FORMAT_RX1        COMPARE HALFWORD (32<-16)
  1673  	op_CHF     uint32 = 0xE3CD // FORMAT_RXY1       COMPARE HIGH (32)
  1674  	op_CHHR    uint32 = 0xB9CD // FORMAT_RRE        COMPARE HIGH (32)
  1675  	op_CHHSI   uint32 = 0xE554 // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (16)
  1676  	op_CHI     uint32 = 0xA70E // FORMAT_RI1        COMPARE HALFWORD IMMEDIATE (32<-16)
  1677  	op_CHLR    uint32 = 0xB9DD // FORMAT_RRE        COMPARE HIGH (32)
  1678  	op_CHRL    uint32 = 0xC605 // FORMAT_RIL2       COMPARE HALFWORD RELATIVE LONG (32<-16)
  1679  	op_CHSI    uint32 = 0xE55C // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (32<-16)
  1680  	op_CHY     uint32 = 0xE379 // FORMAT_RXY1       COMPARE HALFWORD (32<-16)
  1681  	op_CIB     uint32 = 0xECFE // FORMAT_RIS        COMPARE IMMEDIATE AND BRANCH (32<-8)
  1682  	op_CIH     uint32 = 0xCC0D // FORMAT_RIL1       COMPARE IMMEDIATE HIGH (32)
  1683  	op_CIJ     uint32 = 0xEC7E // FORMAT_RIE3       COMPARE IMMEDIATE AND BRANCH RELATIVE (32<-8)
  1684  	op_CIT     uint32 = 0xEC72 // FORMAT_RIE1       COMPARE IMMEDIATE AND TRAP (32<-16)
  1685  	op_CKSM    uint32 = 0xB241 // FORMAT_RRE        CHECKSUM
  1686  	op_CL      uint32 = 0x5500 // FORMAT_RX1        COMPARE LOGICAL (32)
  1687  	op_CLC     uint32 = 0xD500 // FORMAT_SS1        COMPARE LOGICAL (character)
  1688  	op_CLCL    uint32 = 0x0F00 // FORMAT_RR         COMPARE LOGICAL LONG
  1689  	op_CLCLE   uint32 = 0xA900 // FORMAT_RS1        COMPARE LOGICAL LONG EXTENDED
  1690  	op_CLCLU   uint32 = 0xEB8F // FORMAT_RSY1       COMPARE LOGICAL LONG UNICODE
  1691  	op_CLFDBR  uint32 = 0xB39D // FORMAT_RRF5       CONVERT TO LOGICAL (long BFP to 32)
  1692  	op_CLFDTR  uint32 = 0xB943 // FORMAT_RRF5       CONVERT TO LOGICAL (long DFP to 32)
  1693  	op_CLFEBR  uint32 = 0xB39C // FORMAT_RRF5       CONVERT TO LOGICAL (short BFP to 32)
  1694  	op_CLFHSI  uint32 = 0xE55D // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (32<-16)
  1695  	op_CLFI    uint32 = 0xC20F // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE (32)
  1696  	op_CLFIT   uint32 = 0xEC73 // FORMAT_RIE1       COMPARE LOGICAL IMMEDIATE AND TRAP (32<-16)
  1697  	op_CLFXBR  uint32 = 0xB39E // FORMAT_RRF5       CONVERT TO LOGICAL (extended BFP to 32)
  1698  	op_CLFXTR  uint32 = 0xB94B // FORMAT_RRF5       CONVERT TO LOGICAL (extended DFP to 32)
  1699  	op_CLG     uint32 = 0xE321 // FORMAT_RXY1       COMPARE LOGICAL (64)
  1700  	op_CLGDBR  uint32 = 0xB3AD // FORMAT_RRF5       CONVERT TO LOGICAL (long BFP to 64)
  1701  	op_CLGDTR  uint32 = 0xB942 // FORMAT_RRF5       CONVERT TO LOGICAL (long DFP to 64)
  1702  	op_CLGEBR  uint32 = 0xB3AC // FORMAT_RRF5       CONVERT TO LOGICAL (short BFP to 64)
  1703  	op_CLGF    uint32 = 0xE331 // FORMAT_RXY1       COMPARE LOGICAL (64<-32)
  1704  	op_CLGFI   uint32 = 0xC20E // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE (64<-32)
  1705  	op_CLGFR   uint32 = 0xB931 // FORMAT_RRE        COMPARE LOGICAL (64<-32)
  1706  	op_CLGFRL  uint32 = 0xC60E // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64<-32)
  1707  	op_CLGHRL  uint32 = 0xC606 // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64<-16)
  1708  	op_CLGHSI  uint32 = 0xE559 // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (64<-16)
  1709  	op_CLGIB   uint32 = 0xECFD // FORMAT_RIS        COMPARE LOGICAL IMMEDIATE AND BRANCH (64<-8)
  1710  	op_CLGIJ   uint32 = 0xEC7D // FORMAT_RIE3       COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE (64<-8)
  1711  	op_CLGIT   uint32 = 0xEC71 // FORMAT_RIE1       COMPARE LOGICAL IMMEDIATE AND TRAP (64<-16)
  1712  	op_CLGR    uint32 = 0xB921 // FORMAT_RRE        COMPARE LOGICAL (64)
  1713  	op_CLGRB   uint32 = 0xECE5 // FORMAT_RRS        COMPARE LOGICAL AND BRANCH (64)
  1714  	op_CLGRJ   uint32 = 0xEC65 // FORMAT_RIE2       COMPARE LOGICAL AND BRANCH RELATIVE (64)
  1715  	op_CLGRL   uint32 = 0xC60A // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64)
  1716  	op_CLGRT   uint32 = 0xB961 // FORMAT_RRF3       COMPARE LOGICAL AND TRAP (64)
  1717  	op_CLGT    uint32 = 0xEB2B // FORMAT_RSY2       COMPARE LOGICAL AND TRAP (64)
  1718  	op_CLGXBR  uint32 = 0xB3AE // FORMAT_RRF5       CONVERT TO LOGICAL (extended BFP to 64)
  1719  	op_CLGXTR  uint32 = 0xB94A // FORMAT_RRF5       CONVERT TO LOGICAL (extended DFP to 64)
  1720  	op_CLHF    uint32 = 0xE3CF // FORMAT_RXY1       COMPARE LOGICAL HIGH (32)
  1721  	op_CLHHR   uint32 = 0xB9CF // FORMAT_RRE        COMPARE LOGICAL HIGH (32)
  1722  	op_CLHHSI  uint32 = 0xE555 // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (16)
  1723  	op_CLHLR   uint32 = 0xB9DF // FORMAT_RRE        COMPARE LOGICAL HIGH (32)
  1724  	op_CLHRL   uint32 = 0xC607 // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (32<-16)
  1725  	op_CLI     uint32 = 0x9500 // FORMAT_SI         COMPARE LOGICAL (immediate)
  1726  	op_CLIB    uint32 = 0xECFF // FORMAT_RIS        COMPARE LOGICAL IMMEDIATE AND BRANCH (32<-8)
  1727  	op_CLIH    uint32 = 0xCC0F // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE HIGH (32)
  1728  	op_CLIJ    uint32 = 0xEC7F // FORMAT_RIE3       COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE (32<-8)
  1729  	op_CLIY    uint32 = 0xEB55 // FORMAT_SIY        COMPARE LOGICAL (immediate)
  1730  	op_CLM     uint32 = 0xBD00 // FORMAT_RS2        COMPARE LOGICAL CHAR. UNDER MASK (low)
  1731  	op_CLMH    uint32 = 0xEB20 // FORMAT_RSY2       COMPARE LOGICAL CHAR. UNDER MASK (high)
  1732  	op_CLMY    uint32 = 0xEB21 // FORMAT_RSY2       COMPARE LOGICAL CHAR. UNDER MASK (low)
  1733  	op_CLR     uint32 = 0x1500 // FORMAT_RR         COMPARE LOGICAL (32)
  1734  	op_CLRB    uint32 = 0xECF7 // FORMAT_RRS        COMPARE LOGICAL AND BRANCH (32)
  1735  	op_CLRJ    uint32 = 0xEC77 // FORMAT_RIE2       COMPARE LOGICAL AND BRANCH RELATIVE (32)
  1736  	op_CLRL    uint32 = 0xC60F // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (32)
  1737  	op_CLRT    uint32 = 0xB973 // FORMAT_RRF3       COMPARE LOGICAL AND TRAP (32)
  1738  	op_CLST    uint32 = 0xB25D // FORMAT_RRE        COMPARE LOGICAL STRING
  1739  	op_CLT     uint32 = 0xEB23 // FORMAT_RSY2       COMPARE LOGICAL AND TRAP (32)
  1740  	op_CLY     uint32 = 0xE355 // FORMAT_RXY1       COMPARE LOGICAL (32)
  1741  	op_CMPSC   uint32 = 0xB263 // FORMAT_RRE        COMPRESSION CALL
  1742  	op_CP      uint32 = 0xF900 // FORMAT_SS2        COMPARE DECIMAL
  1743  	op_CPSDR   uint32 = 0xB372 // FORMAT_RRF2       COPY SIGN (long)
  1744  	op_CPYA    uint32 = 0xB24D // FORMAT_RRE        COPY ACCESS
  1745  	op_CR      uint32 = 0x1900 // FORMAT_RR         COMPARE (32)
  1746  	op_CRB     uint32 = 0xECF6 // FORMAT_RRS        COMPARE AND BRANCH (32)
  1747  	op_CRDTE   uint32 = 0xB98F // FORMAT_RRF2       COMPARE AND REPLACE DAT TABLE ENTRY
  1748  	op_CRJ     uint32 = 0xEC76 // FORMAT_RIE2       COMPARE AND BRANCH RELATIVE (32)
  1749  	op_CRL     uint32 = 0xC60D // FORMAT_RIL2       COMPARE RELATIVE LONG (32)
  1750  	op_CRT     uint32 = 0xB972 // FORMAT_RRF3       COMPARE AND TRAP (32)
  1751  	op_CS      uint32 = 0xBA00 // FORMAT_RS1        COMPARE AND SWAP (32)
  1752  	op_CSCH    uint32 = 0xB230 // FORMAT_S          CLEAR SUBCHANNEL
  1753  	op_CSDTR   uint32 = 0xB3E3 // FORMAT_RRF4       CONVERT TO SIGNED PACKED (long DFP to 64)
  1754  	op_CSG     uint32 = 0xEB30 // FORMAT_RSY1       COMPARE AND SWAP (64)
  1755  	op_CSP     uint32 = 0xB250 // FORMAT_RRE        COMPARE AND SWAP AND PURGE
  1756  	op_CSPG    uint32 = 0xB98A // FORMAT_RRE        COMPARE AND SWAP AND PURGE
  1757  	op_CSST    uint32 = 0xC802 // FORMAT_SSF        COMPARE AND SWAP AND STORE
  1758  	op_CSXTR   uint32 = 0xB3EB // FORMAT_RRF4       CONVERT TO SIGNED PACKED (extended DFP to 128)
  1759  	op_CSY     uint32 = 0xEB14 // FORMAT_RSY1       COMPARE AND SWAP (32)
  1760  	op_CU12    uint32 = 0xB2A7 // FORMAT_RRF3       CONVERT UTF-8 TO UTF-16
  1761  	op_CU14    uint32 = 0xB9B0 // FORMAT_RRF3       CONVERT UTF-8 TO UTF-32
  1762  	op_CU21    uint32 = 0xB2A6 // FORMAT_RRF3       CONVERT UTF-16 TO UTF-8
  1763  	op_CU24    uint32 = 0xB9B1 // FORMAT_RRF3       CONVERT UTF-16 TO UTF-32
  1764  	op_CU41    uint32 = 0xB9B2 // FORMAT_RRE        CONVERT UTF-32 TO UTF-8
  1765  	op_CU42    uint32 = 0xB9B3 // FORMAT_RRE        CONVERT UTF-32 TO UTF-16
  1766  	op_CUDTR   uint32 = 0xB3E2 // FORMAT_RRE        CONVERT TO UNSIGNED PACKED (long DFP to 64)
  1767  	op_CUSE    uint32 = 0xB257 // FORMAT_RRE        COMPARE UNTIL SUBSTRING EQUAL
  1768  	op_CUTFU   uint32 = 0xB2A7 // FORMAT_RRF3       CONVERT UTF-8 TO UNICODE
  1769  	op_CUUTF   uint32 = 0xB2A6 // FORMAT_RRF3       CONVERT UNICODE TO UTF-8
  1770  	op_CUXTR   uint32 = 0xB3EA // FORMAT_RRE        CONVERT TO UNSIGNED PACKED (extended DFP to 128)
  1771  	op_CVB     uint32 = 0x4F00 // FORMAT_RX1        CONVERT TO BINARY (32)
  1772  	op_CVBG    uint32 = 0xE30E // FORMAT_RXY1       CONVERT TO BINARY (64)
  1773  	op_CVBY    uint32 = 0xE306 // FORMAT_RXY1       CONVERT TO BINARY (32)
  1774  	op_CVD     uint32 = 0x4E00 // FORMAT_RX1        CONVERT TO DECIMAL (32)
  1775  	op_CVDG    uint32 = 0xE32E // FORMAT_RXY1       CONVERT TO DECIMAL (64)
  1776  	op_CVDY    uint32 = 0xE326 // FORMAT_RXY1       CONVERT TO DECIMAL (32)
  1777  	op_CXBR    uint32 = 0xB349 // FORMAT_RRE        COMPARE (extended BFP)
  1778  	op_CXFBR   uint32 = 0xB396 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended BFP)
  1779  	op_CXFBRA  uint32 = 0xB396 // FORMAT_RRF5       CONVERT FROM FIXED (32 to extended BFP)
  1780  	op_CXFR    uint32 = 0xB3B6 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended HFP)
  1781  	op_CXFTR   uint32 = 0xB959 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended DFP)
  1782  	op_CXGBR   uint32 = 0xB3A6 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended BFP)
  1783  	op_CXGBRA  uint32 = 0xB3A6 // FORMAT_RRF5       CONVERT FROM FIXED (64 to extended BFP)
  1784  	op_CXGR    uint32 = 0xB3C6 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended HFP)
  1785  	op_CXGTR   uint32 = 0xB3F9 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended DFP)
  1786  	op_CXGTRA  uint32 = 0xB3F9 // FORMAT_RRF5       CONVERT FROM FIXED (64 to extended DFP)
  1787  	op_CXLFBR  uint32 = 0xB392 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to extended BFP)
  1788  	op_CXLFTR  uint32 = 0xB95B // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to extended DFP)
  1789  	op_CXLGBR  uint32 = 0xB3A2 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to extended BFP)
  1790  	op_CXLGTR  uint32 = 0xB95A // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to extended DFP)
  1791  	op_CXR     uint32 = 0xB369 // FORMAT_RRE        COMPARE (extended HFP)
  1792  	op_CXSTR   uint32 = 0xB3FB // FORMAT_RRE        CONVERT FROM SIGNED PACKED (128 to extended DFP)
  1793  	op_CXTR    uint32 = 0xB3EC // FORMAT_RRE        COMPARE (extended DFP)
  1794  	op_CXUTR   uint32 = 0xB3FA // FORMAT_RRE        CONVERT FROM UNSIGNED PACKED (128 to ext. DFP)
  1795  	op_CXZT    uint32 = 0xEDAB // FORMAT_RSL        CONVERT FROM ZONED (to extended DFP)
  1796  	op_CY      uint32 = 0xE359 // FORMAT_RXY1       COMPARE (32)
  1797  	op_CZDT    uint32 = 0xEDA8 // FORMAT_RSL        CONVERT TO ZONED (from long DFP)
  1798  	op_CZXT    uint32 = 0xEDA9 // FORMAT_RSL        CONVERT TO ZONED (from extended DFP)
  1799  	op_D       uint32 = 0x5D00 // FORMAT_RX1        DIVIDE (32<-64)
  1800  	op_DD      uint32 = 0x6D00 // FORMAT_RX1        DIVIDE (long HFP)
  1801  	op_DDB     uint32 = 0xED1D // FORMAT_RXE        DIVIDE (long BFP)
  1802  	op_DDBR    uint32 = 0xB31D // FORMAT_RRE        DIVIDE (long BFP)
  1803  	op_DDR     uint32 = 0x2D00 // FORMAT_RR         DIVIDE (long HFP)
  1804  	op_DDTR    uint32 = 0xB3D1 // FORMAT_RRF1       DIVIDE (long DFP)
  1805  	op_DDTRA   uint32 = 0xB3D1 // FORMAT_RRF1       DIVIDE (long DFP)
  1806  	op_DE      uint32 = 0x7D00 // FORMAT_RX1        DIVIDE (short HFP)
  1807  	op_DEB     uint32 = 0xED0D // FORMAT_RXE        DIVIDE (short BFP)
  1808  	op_DEBR    uint32 = 0xB30D // FORMAT_RRE        DIVIDE (short BFP)
  1809  	op_DER     uint32 = 0x3D00 // FORMAT_RR         DIVIDE (short HFP)
  1810  	op_DIDBR   uint32 = 0xB35B // FORMAT_RRF2       DIVIDE TO INTEGER (long BFP)
  1811  	op_DIEBR   uint32 = 0xB353 // FORMAT_RRF2       DIVIDE TO INTEGER (short BFP)
  1812  	op_DL      uint32 = 0xE397 // FORMAT_RXY1       DIVIDE LOGICAL (32<-64)
  1813  	op_DLG     uint32 = 0xE387 // FORMAT_RXY1       DIVIDE LOGICAL (64<-128)
  1814  	op_DLGR    uint32 = 0xB987 // FORMAT_RRE        DIVIDE LOGICAL (64<-128)
  1815  	op_DLR     uint32 = 0xB997 // FORMAT_RRE        DIVIDE LOGICAL (32<-64)
  1816  	op_DP      uint32 = 0xFD00 // FORMAT_SS2        DIVIDE DECIMAL
  1817  	op_DR      uint32 = 0x1D00 // FORMAT_RR         DIVIDE (32<-64)
  1818  	op_DSG     uint32 = 0xE30D // FORMAT_RXY1       DIVIDE SINGLE (64)
  1819  	op_DSGF    uint32 = 0xE31D // FORMAT_RXY1       DIVIDE SINGLE (64<-32)
  1820  	op_DSGFR   uint32 = 0xB91D // FORMAT_RRE        DIVIDE SINGLE (64<-32)
  1821  	op_DSGR    uint32 = 0xB90D // FORMAT_RRE        DIVIDE SINGLE (64)
  1822  	op_DXBR    uint32 = 0xB34D // FORMAT_RRE        DIVIDE (extended BFP)
  1823  	op_DXR     uint32 = 0xB22D // FORMAT_RRE        DIVIDE (extended HFP)
  1824  	op_DXTR    uint32 = 0xB3D9 // FORMAT_RRF1       DIVIDE (extended DFP)
  1825  	op_DXTRA   uint32 = 0xB3D9 // FORMAT_RRF1       DIVIDE (extended DFP)
  1826  	op_EAR     uint32 = 0xB24F // FORMAT_RRE        EXTRACT ACCESS
  1827  	op_ECAG    uint32 = 0xEB4C // FORMAT_RSY1       EXTRACT CACHE ATTRIBUTE
  1828  	op_ECTG    uint32 = 0xC801 // FORMAT_SSF        EXTRACT CPU TIME
  1829  	op_ED      uint32 = 0xDE00 // FORMAT_SS1        EDIT
  1830  	op_EDMK    uint32 = 0xDF00 // FORMAT_SS1        EDIT AND MARK
  1831  	op_EEDTR   uint32 = 0xB3E5 // FORMAT_RRE        EXTRACT BIASED EXPONENT (long DFP to 64)
  1832  	op_EEXTR   uint32 = 0xB3ED // FORMAT_RRE        EXTRACT BIASED EXPONENT (extended DFP to 64)
  1833  	op_EFPC    uint32 = 0xB38C // FORMAT_RRE        EXTRACT FPC
  1834  	op_EPAIR   uint32 = 0xB99A // FORMAT_RRE        EXTRACT PRIMARY ASN AND INSTANCE
  1835  	op_EPAR    uint32 = 0xB226 // FORMAT_RRE        EXTRACT PRIMARY ASN
  1836  	op_EPSW    uint32 = 0xB98D // FORMAT_RRE        EXTRACT PSW
  1837  	op_EREG    uint32 = 0xB249 // FORMAT_RRE        EXTRACT STACKED REGISTERS (32)
  1838  	op_EREGG   uint32 = 0xB90E // FORMAT_RRE        EXTRACT STACKED REGISTERS (64)
  1839  	op_ESAIR   uint32 = 0xB99B // FORMAT_RRE        EXTRACT SECONDARY ASN AND INSTANCE
  1840  	op_ESAR    uint32 = 0xB227 // FORMAT_RRE        EXTRACT SECONDARY ASN
  1841  	op_ESDTR   uint32 = 0xB3E7 // FORMAT_RRE        EXTRACT SIGNIFICANCE (long DFP)
  1842  	op_ESEA    uint32 = 0xB99D // FORMAT_RRE        EXTRACT AND SET EXTENDED AUTHORITY
  1843  	op_ESTA    uint32 = 0xB24A // FORMAT_RRE        EXTRACT STACKED STATE
  1844  	op_ESXTR   uint32 = 0xB3EF // FORMAT_RRE        EXTRACT SIGNIFICANCE (extended DFP)
  1845  	op_ETND    uint32 = 0xB2EC // FORMAT_RRE        EXTRACT TRANSACTION NESTING DEPTH
  1846  	op_EX      uint32 = 0x4400 // FORMAT_RX1        EXECUTE
  1847  	op_EXRL    uint32 = 0xC600 // FORMAT_RIL2       EXECUTE RELATIVE LONG
  1848  	op_FIDBR   uint32 = 0xB35F // FORMAT_RRF5       LOAD FP INTEGER (long BFP)
  1849  	op_FIDBRA  uint32 = 0xB35F // FORMAT_RRF5       LOAD FP INTEGER (long BFP)
  1850  	op_FIDR    uint32 = 0xB37F // FORMAT_RRE        LOAD FP INTEGER (long HFP)
  1851  	op_FIDTR   uint32 = 0xB3D7 // FORMAT_RRF5       LOAD FP INTEGER (long DFP)
  1852  	op_FIEBR   uint32 = 0xB357 // FORMAT_RRF5       LOAD FP INTEGER (short BFP)
  1853  	op_FIEBRA  uint32 = 0xB357 // FORMAT_RRF5       LOAD FP INTEGER (short BFP)
  1854  	op_FIER    uint32 = 0xB377 // FORMAT_RRE        LOAD FP INTEGER (short HFP)
  1855  	op_FIXBR   uint32 = 0xB347 // FORMAT_RRF5       LOAD FP INTEGER (extended BFP)
  1856  	op_FIXBRA  uint32 = 0xB347 // FORMAT_RRF5       LOAD FP INTEGER (extended BFP)
  1857  	op_FIXR    uint32 = 0xB367 // FORMAT_RRE        LOAD FP INTEGER (extended HFP)
  1858  	op_FIXTR   uint32 = 0xB3DF // FORMAT_RRF5       LOAD FP INTEGER (extended DFP)
  1859  	op_FLOGR   uint32 = 0xB983 // FORMAT_RRE        FIND LEFTMOST ONE
  1860  	op_HDR     uint32 = 0x2400 // FORMAT_RR         HALVE (long HFP)
  1861  	op_HER     uint32 = 0x3400 // FORMAT_RR         HALVE (short HFP)
  1862  	op_HSCH    uint32 = 0xB231 // FORMAT_S          HALT SUBCHANNEL
  1863  	op_IAC     uint32 = 0xB224 // FORMAT_RRE        INSERT ADDRESS SPACE CONTROL
  1864  	op_IC      uint32 = 0x4300 // FORMAT_RX1        INSERT CHARACTER
  1865  	op_ICM     uint32 = 0xBF00 // FORMAT_RS2        INSERT CHARACTERS UNDER MASK (low)
  1866  	op_ICMH    uint32 = 0xEB80 // FORMAT_RSY2       INSERT CHARACTERS UNDER MASK (high)
  1867  	op_ICMY    uint32 = 0xEB81 // FORMAT_RSY2       INSERT CHARACTERS UNDER MASK (low)
  1868  	op_ICY     uint32 = 0xE373 // FORMAT_RXY1       INSERT CHARACTER
  1869  	op_IDTE    uint32 = 0xB98E // FORMAT_RRF2       INVALIDATE DAT TABLE ENTRY
  1870  	op_IEDTR   uint32 = 0xB3F6 // FORMAT_RRF2       INSERT BIASED EXPONENT (64 to long DFP)
  1871  	op_IEXTR   uint32 = 0xB3FE // FORMAT_RRF2       INSERT BIASED EXPONENT (64 to extended DFP)
  1872  	op_IIHF    uint32 = 0xC008 // FORMAT_RIL1       INSERT IMMEDIATE (high)
  1873  	op_IIHH    uint32 = 0xA500 // FORMAT_RI1        INSERT IMMEDIATE (high high)
  1874  	op_IIHL    uint32 = 0xA501 // FORMAT_RI1        INSERT IMMEDIATE (high low)
  1875  	op_IILF    uint32 = 0xC009 // FORMAT_RIL1       INSERT IMMEDIATE (low)
  1876  	op_IILH    uint32 = 0xA502 // FORMAT_RI1        INSERT IMMEDIATE (low high)
  1877  	op_IILL    uint32 = 0xA503 // FORMAT_RI1        INSERT IMMEDIATE (low low)
  1878  	op_IPK     uint32 = 0xB20B // FORMAT_S          INSERT PSW KEY
  1879  	op_IPM     uint32 = 0xB222 // FORMAT_RRE        INSERT PROGRAM MASK
  1880  	op_IPTE    uint32 = 0xB221 // FORMAT_RRF1       INVALIDATE PAGE TABLE ENTRY
  1881  	op_ISKE    uint32 = 0xB229 // FORMAT_RRE        INSERT STORAGE KEY EXTENDED
  1882  	op_IVSK    uint32 = 0xB223 // FORMAT_RRE        INSERT VIRTUAL STORAGE KEY
  1883  	op_KDB     uint32 = 0xED18 // FORMAT_RXE        COMPARE AND SIGNAL (long BFP)
  1884  	op_KDBR    uint32 = 0xB318 // FORMAT_RRE        COMPARE AND SIGNAL (long BFP)
  1885  	op_KDTR    uint32 = 0xB3E0 // FORMAT_RRE        COMPARE AND SIGNAL (long DFP)
  1886  	op_KEB     uint32 = 0xED08 // FORMAT_RXE        COMPARE AND SIGNAL (short BFP)
  1887  	op_KEBR    uint32 = 0xB308 // FORMAT_RRE        COMPARE AND SIGNAL (short BFP)
  1888  	op_KIMD    uint32 = 0xB93E // FORMAT_RRE        COMPUTE INTERMEDIATE MESSAGE DIGEST
  1889  	op_KLMD    uint32 = 0xB93F // FORMAT_RRE        COMPUTE LAST MESSAGE DIGEST
  1890  	op_KM      uint32 = 0xB92E // FORMAT_RRE        CIPHER MESSAGE
  1891  	op_KMAC    uint32 = 0xB91E // FORMAT_RRE        COMPUTE MESSAGE AUTHENTICATION CODE
  1892  	op_KMC     uint32 = 0xB92F // FORMAT_RRE        CIPHER MESSAGE WITH CHAINING
  1893  	op_KMA     uint32 = 0xB929 // FORMAT_RRF2       CIPHER MESSAGE WITH AUTHENTICATION
  1894  	op_KMCTR   uint32 = 0xB92D // FORMAT_RRF2       CIPHER MESSAGE WITH COUNTER
  1895  	op_KMF     uint32 = 0xB92A // FORMAT_RRE        CIPHER MESSAGE WITH CFB
  1896  	op_KMO     uint32 = 0xB92B // FORMAT_RRE        CIPHER MESSAGE WITH OFB
  1897  	op_KXBR    uint32 = 0xB348 // FORMAT_RRE        COMPARE AND SIGNAL (extended BFP)
  1898  	op_KXTR    uint32 = 0xB3E8 // FORMAT_RRE        COMPARE AND SIGNAL (extended DFP)
  1899  	op_L       uint32 = 0x5800 // FORMAT_RX1        LOAD (32)
  1900  	op_LA      uint32 = 0x4100 // FORMAT_RX1        LOAD ADDRESS
  1901  	op_LAA     uint32 = 0xEBF8 // FORMAT_RSY1       LOAD AND ADD (32)
  1902  	op_LAAG    uint32 = 0xEBE8 // FORMAT_RSY1       LOAD AND ADD (64)
  1903  	op_LAAL    uint32 = 0xEBFA // FORMAT_RSY1       LOAD AND ADD LOGICAL (32)
  1904  	op_LAALG   uint32 = 0xEBEA // FORMAT_RSY1       LOAD AND ADD LOGICAL (64)
  1905  	op_LAE     uint32 = 0x5100 // FORMAT_RX1        LOAD ADDRESS EXTENDED
  1906  	op_LAEY    uint32 = 0xE375 // FORMAT_RXY1       LOAD ADDRESS EXTENDED
  1907  	op_LAM     uint32 = 0x9A00 // FORMAT_RS1        LOAD ACCESS MULTIPLE
  1908  	op_LAMY    uint32 = 0xEB9A // FORMAT_RSY1       LOAD ACCESS MULTIPLE
  1909  	op_LAN     uint32 = 0xEBF4 // FORMAT_RSY1       LOAD AND AND (32)
  1910  	op_LANG    uint32 = 0xEBE4 // FORMAT_RSY1       LOAD AND AND (64)
  1911  	op_LAO     uint32 = 0xEBF6 // FORMAT_RSY1       LOAD AND OR (32)
  1912  	op_LAOG    uint32 = 0xEBE6 // FORMAT_RSY1       LOAD AND OR (64)
  1913  	op_LARL    uint32 = 0xC000 // FORMAT_RIL2       LOAD ADDRESS RELATIVE LONG
  1914  	op_LASP    uint32 = 0xE500 // FORMAT_SSE        LOAD ADDRESS SPACE PARAMETERS
  1915  	op_LAT     uint32 = 0xE39F // FORMAT_RXY1       LOAD AND TRAP (32L<-32)
  1916  	op_LAX     uint32 = 0xEBF7 // FORMAT_RSY1       LOAD AND EXCLUSIVE OR (32)
  1917  	op_LAXG    uint32 = 0xEBE7 // FORMAT_RSY1       LOAD AND EXCLUSIVE OR (64)
  1918  	op_LAY     uint32 = 0xE371 // FORMAT_RXY1       LOAD ADDRESS
  1919  	op_LB      uint32 = 0xE376 // FORMAT_RXY1       LOAD BYTE (32)
  1920  	op_LBH     uint32 = 0xE3C0 // FORMAT_RXY1       LOAD BYTE HIGH (32<-8)
  1921  	op_LBR     uint32 = 0xB926 // FORMAT_RRE        LOAD BYTE (32)
  1922  	op_LCDBR   uint32 = 0xB313 // FORMAT_RRE        LOAD COMPLEMENT (long BFP)
  1923  	op_LCDFR   uint32 = 0xB373 // FORMAT_RRE        LOAD COMPLEMENT (long)
  1924  	op_LCDR    uint32 = 0x2300 // FORMAT_RR         LOAD COMPLEMENT (long HFP)
  1925  	op_LCEBR   uint32 = 0xB303 // FORMAT_RRE        LOAD COMPLEMENT (short BFP)
  1926  	op_LCER    uint32 = 0x3300 // FORMAT_RR         LOAD COMPLEMENT (short HFP)
  1927  	op_LCGFR   uint32 = 0xB913 // FORMAT_RRE        LOAD COMPLEMENT (64<-32)
  1928  	op_LCGR    uint32 = 0xB903 // FORMAT_RRE        LOAD COMPLEMENT (64)
  1929  	op_LCR     uint32 = 0x1300 // FORMAT_RR         LOAD COMPLEMENT (32)
  1930  	op_LCTL    uint32 = 0xB700 // FORMAT_RS1        LOAD CONTROL (32)
  1931  	op_LCTLG   uint32 = 0xEB2F // FORMAT_RSY1       LOAD CONTROL (64)
  1932  	op_LCXBR   uint32 = 0xB343 // FORMAT_RRE        LOAD COMPLEMENT (extended BFP)
  1933  	op_LCXR    uint32 = 0xB363 // FORMAT_RRE        LOAD COMPLEMENT (extended HFP)
  1934  	op_LD      uint32 = 0x6800 // FORMAT_RX1        LOAD (long)
  1935  	op_LDE     uint32 = 0xED24 // FORMAT_RXE        LOAD LENGTHENED (short to long HFP)
  1936  	op_LDEB    uint32 = 0xED04 // FORMAT_RXE        LOAD LENGTHENED (short to long BFP)
  1937  	op_LDEBR   uint32 = 0xB304 // FORMAT_RRE        LOAD LENGTHENED (short to long BFP)
  1938  	op_LDER    uint32 = 0xB324 // FORMAT_RRE        LOAD LENGTHENED (short to long HFP)
  1939  	op_LDETR   uint32 = 0xB3D4 // FORMAT_RRF4       LOAD LENGTHENED (short to long DFP)
  1940  	op_LDGR    uint32 = 0xB3C1 // FORMAT_RRE        LOAD FPR FROM GR (64 to long)
  1941  	op_LDR     uint32 = 0x2800 // FORMAT_RR         LOAD (long)
  1942  	op_LDXBR   uint32 = 0xB345 // FORMAT_RRE        LOAD ROUNDED (extended to long BFP)
  1943  	op_LDXBRA  uint32 = 0xB345 // FORMAT_RRF5       LOAD ROUNDED (extended to long BFP)
  1944  	op_LDXR    uint32 = 0x2500 // FORMAT_RR         LOAD ROUNDED (extended to long HFP)
  1945  	op_LDXTR   uint32 = 0xB3DD // FORMAT_RRF5       LOAD ROUNDED (extended to long DFP)
  1946  	op_LDY     uint32 = 0xED65 // FORMAT_RXY1       LOAD (long)
  1947  	op_LE      uint32 = 0x7800 // FORMAT_RX1        LOAD (short)
  1948  	op_LEDBR   uint32 = 0xB344 // FORMAT_RRE        LOAD ROUNDED (long to short BFP)
  1949  	op_LEDBRA  uint32 = 0xB344 // FORMAT_RRF5       LOAD ROUNDED (long to short BFP)
  1950  	op_LEDR    uint32 = 0x3500 // FORMAT_RR         LOAD ROUNDED (long to short HFP)
  1951  	op_LEDTR   uint32 = 0xB3D5 // FORMAT_RRF5       LOAD ROUNDED (long to short DFP)
  1952  	op_LER     uint32 = 0x3800 // FORMAT_RR         LOAD (short)
  1953  	op_LEXBR   uint32 = 0xB346 // FORMAT_RRE        LOAD ROUNDED (extended to short BFP)
  1954  	op_LEXBRA  uint32 = 0xB346 // FORMAT_RRF5       LOAD ROUNDED (extended to short BFP)
  1955  	op_LEXR    uint32 = 0xB366 // FORMAT_RRE        LOAD ROUNDED (extended to short HFP)
  1956  	op_LEY     uint32 = 0xED64 // FORMAT_RXY1       LOAD (short)
  1957  	op_LFAS    uint32 = 0xB2BD // FORMAT_S          LOAD FPC AND SIGNAL
  1958  	op_LFH     uint32 = 0xE3CA // FORMAT_RXY1       LOAD HIGH (32)
  1959  	op_LFHAT   uint32 = 0xE3C8 // FORMAT_RXY1       LOAD HIGH AND TRAP (32H<-32)
  1960  	op_LFPC    uint32 = 0xB29D // FORMAT_S          LOAD FPC
  1961  	op_LG      uint32 = 0xE304 // FORMAT_RXY1       LOAD (64)
  1962  	op_LGAT    uint32 = 0xE385 // FORMAT_RXY1       LOAD AND TRAP (64)
  1963  	op_LGB     uint32 = 0xE377 // FORMAT_RXY1       LOAD BYTE (64)
  1964  	op_LGBR    uint32 = 0xB906 // FORMAT_RRE        LOAD BYTE (64)
  1965  	op_LGDR    uint32 = 0xB3CD // FORMAT_RRE        LOAD GR FROM FPR (long to 64)
  1966  	op_LGF     uint32 = 0xE314 // FORMAT_RXY1       LOAD (64<-32)
  1967  	op_LGFI    uint32 = 0xC001 // FORMAT_RIL1       LOAD IMMEDIATE (64<-32)
  1968  	op_LGFR    uint32 = 0xB914 // FORMAT_RRE        LOAD (64<-32)
  1969  	op_LGFRL   uint32 = 0xC40C // FORMAT_RIL2       LOAD RELATIVE LONG (64<-32)
  1970  	op_LGH     uint32 = 0xE315 // FORMAT_RXY1       LOAD HALFWORD (64)
  1971  	op_LGHI    uint32 = 0xA709 // FORMAT_RI1        LOAD HALFWORD IMMEDIATE (64)
  1972  	op_LGHR    uint32 = 0xB907 // FORMAT_RRE        LOAD HALFWORD (64)
  1973  	op_LGHRL   uint32 = 0xC404 // FORMAT_RIL2       LOAD HALFWORD RELATIVE LONG (64<-16)
  1974  	op_LGR     uint32 = 0xB904 // FORMAT_RRE        LOAD (64)
  1975  	op_LGRL    uint32 = 0xC408 // FORMAT_RIL2       LOAD RELATIVE LONG (64)
  1976  	op_LH      uint32 = 0x4800 // FORMAT_RX1        LOAD HALFWORD (32)
  1977  	op_LHH     uint32 = 0xE3C4 // FORMAT_RXY1       LOAD HALFWORD HIGH (32<-16)
  1978  	op_LHI     uint32 = 0xA708 // FORMAT_RI1        LOAD HALFWORD IMMEDIATE (32)
  1979  	op_LHR     uint32 = 0xB927 // FORMAT_RRE        LOAD HALFWORD (32)
  1980  	op_LHRL    uint32 = 0xC405 // FORMAT_RIL2       LOAD HALFWORD RELATIVE LONG (32<-16)
  1981  	op_LHY     uint32 = 0xE378 // FORMAT_RXY1       LOAD HALFWORD (32)
  1982  	op_LLC     uint32 = 0xE394 // FORMAT_RXY1       LOAD LOGICAL CHARACTER (32)
  1983  	op_LLCH    uint32 = 0xE3C2 // FORMAT_RXY1       LOAD LOGICAL CHARACTER HIGH (32<-8)
  1984  	op_LLCR    uint32 = 0xB994 // FORMAT_RRE        LOAD LOGICAL CHARACTER (32)
  1985  	op_LLGC    uint32 = 0xE390 // FORMAT_RXY1       LOAD LOGICAL CHARACTER (64)
  1986  	op_LLGCR   uint32 = 0xB984 // FORMAT_RRE        LOAD LOGICAL CHARACTER (64)
  1987  	op_LLGF    uint32 = 0xE316 // FORMAT_RXY1       LOAD LOGICAL (64<-32)
  1988  	op_LLGFAT  uint32 = 0xE39D // FORMAT_RXY1       LOAD LOGICAL AND TRAP (64<-32)
  1989  	op_LLGFR   uint32 = 0xB916 // FORMAT_RRE        LOAD LOGICAL (64<-32)
  1990  	op_LLGFRL  uint32 = 0xC40E // FORMAT_RIL2       LOAD LOGICAL RELATIVE LONG (64<-32)
  1991  	op_LLGH    uint32 = 0xE391 // FORMAT_RXY1       LOAD LOGICAL HALFWORD (64)
  1992  	op_LLGHR   uint32 = 0xB985 // FORMAT_RRE        LOAD LOGICAL HALFWORD (64)
  1993  	op_LLGHRL  uint32 = 0xC406 // FORMAT_RIL2       LOAD LOGICAL HALFWORD RELATIVE LONG (64<-16)
  1994  	op_LLGT    uint32 = 0xE317 // FORMAT_RXY1       LOAD LOGICAL THIRTY ONE BITS
  1995  	op_LLGTAT  uint32 = 0xE39C // FORMAT_RXY1       LOAD LOGICAL THIRTY ONE BITS AND TRAP (64<-31)
  1996  	op_LLGTR   uint32 = 0xB917 // FORMAT_RRE        LOAD LOGICAL THIRTY ONE BITS
  1997  	op_LLH     uint32 = 0xE395 // FORMAT_RXY1       LOAD LOGICAL HALFWORD (32)
  1998  	op_LLHH    uint32 = 0xE3C6 // FORMAT_RXY1       LOAD LOGICAL HALFWORD HIGH (32<-16)
  1999  	op_LLHR    uint32 = 0xB995 // FORMAT_RRE        LOAD LOGICAL HALFWORD (32)
  2000  	op_LLHRL   uint32 = 0xC402 // FORMAT_RIL2       LOAD LOGICAL HALFWORD RELATIVE LONG (32<-16)
  2001  	op_LLIHF   uint32 = 0xC00E // FORMAT_RIL1       LOAD LOGICAL IMMEDIATE (high)
  2002  	op_LLIHH   uint32 = 0xA50C // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (high high)
  2003  	op_LLIHL   uint32 = 0xA50D // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (high low)
  2004  	op_LLILF   uint32 = 0xC00F // FORMAT_RIL1       LOAD LOGICAL IMMEDIATE (low)
  2005  	op_LLILH   uint32 = 0xA50E // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (low high)
  2006  	op_LLILL   uint32 = 0xA50F // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (low low)
  2007  	op_LM      uint32 = 0x9800 // FORMAT_RS1        LOAD MULTIPLE (32)
  2008  	op_LMD     uint32 = 0xEF00 // FORMAT_SS5        LOAD MULTIPLE DISJOINT
  2009  	op_LMG     uint32 = 0xEB04 // FORMAT_RSY1       LOAD MULTIPLE (64)
  2010  	op_LMH     uint32 = 0xEB96 // FORMAT_RSY1       LOAD MULTIPLE HIGH
  2011  	op_LMY     uint32 = 0xEB98 // FORMAT_RSY1       LOAD MULTIPLE (32)
  2012  	op_LNDBR   uint32 = 0xB311 // FORMAT_RRE        LOAD NEGATIVE (long BFP)
  2013  	op_LNDFR   uint32 = 0xB371 // FORMAT_RRE        LOAD NEGATIVE (long)
  2014  	op_LNDR    uint32 = 0x2100 // FORMAT_RR         LOAD NEGATIVE (long HFP)
  2015  	op_LNEBR   uint32 = 0xB301 // FORMAT_RRE        LOAD NEGATIVE (short BFP)
  2016  	op_LNER    uint32 = 0x3100 // FORMAT_RR         LOAD NEGATIVE (short HFP)
  2017  	op_LNGFR   uint32 = 0xB911 // FORMAT_RRE        LOAD NEGATIVE (64<-32)
  2018  	op_LNGR    uint32 = 0xB901 // FORMAT_RRE        LOAD NEGATIVE (64)
  2019  	op_LNR     uint32 = 0x1100 // FORMAT_RR         LOAD NEGATIVE (32)
  2020  	op_LNXBR   uint32 = 0xB341 // FORMAT_RRE        LOAD NEGATIVE (extended BFP)
  2021  	op_LNXR    uint32 = 0xB361 // FORMAT_RRE        LOAD NEGATIVE (extended HFP)
  2022  	op_LOC     uint32 = 0xEBF2 // FORMAT_RSY2       LOAD ON CONDITION (32)
  2023  	op_LOCG    uint32 = 0xEBE2 // FORMAT_RSY2       LOAD ON CONDITION (64)
  2024  	op_LOCGR   uint32 = 0xB9E2 // FORMAT_RRF3       LOAD ON CONDITION (64)
  2025  	op_LOCR    uint32 = 0xB9F2 // FORMAT_RRF3       LOAD ON CONDITION (32)
  2026  	op_LPD     uint32 = 0xC804 // FORMAT_SSF        LOAD PAIR DISJOINT (32)
  2027  	op_LPDBR   uint32 = 0xB310 // FORMAT_RRE        LOAD POSITIVE (long BFP)
  2028  	op_LPDFR   uint32 = 0xB370 // FORMAT_RRE        LOAD POSITIVE (long)
  2029  	op_LPDG    uint32 = 0xC805 // FORMAT_SSF        LOAD PAIR DISJOINT (64)
  2030  	op_LPDR    uint32 = 0x2000 // FORMAT_RR         LOAD POSITIVE (long HFP)
  2031  	op_LPEBR   uint32 = 0xB300 // FORMAT_RRE        LOAD POSITIVE (short BFP)
  2032  	op_LPER    uint32 = 0x3000 // FORMAT_RR         LOAD POSITIVE (short HFP)
  2033  	op_LPGFR   uint32 = 0xB910 // FORMAT_RRE        LOAD POSITIVE (64<-32)
  2034  	op_LPGR    uint32 = 0xB900 // FORMAT_RRE        LOAD POSITIVE (64)
  2035  	op_LPQ     uint32 = 0xE38F // FORMAT_RXY1       LOAD PAIR FROM QUADWORD
  2036  	op_LPR     uint32 = 0x1000 // FORMAT_RR         LOAD POSITIVE (32)
  2037  	op_LPSW    uint32 = 0x8200 // FORMAT_S          LOAD PSW
  2038  	op_LPSWE   uint32 = 0xB2B2 // FORMAT_S          LOAD PSW EXTENDED
  2039  	op_LPTEA   uint32 = 0xB9AA // FORMAT_RRF2       LOAD PAGE TABLE ENTRY ADDRESS
  2040  	op_LPXBR   uint32 = 0xB340 // FORMAT_RRE        LOAD POSITIVE (extended BFP)
  2041  	op_LPXR    uint32 = 0xB360 // FORMAT_RRE        LOAD POSITIVE (extended HFP)
  2042  	op_LR      uint32 = 0x1800 // FORMAT_RR         LOAD (32)
  2043  	op_LRA     uint32 = 0xB100 // FORMAT_RX1        LOAD REAL ADDRESS (32)
  2044  	op_LRAG    uint32 = 0xE303 // FORMAT_RXY1       LOAD REAL ADDRESS (64)
  2045  	op_LRAY    uint32 = 0xE313 // FORMAT_RXY1       LOAD REAL ADDRESS (32)
  2046  	op_LRDR    uint32 = 0x2500 // FORMAT_RR         LOAD ROUNDED (extended to long HFP)
  2047  	op_LRER    uint32 = 0x3500 // FORMAT_RR         LOAD ROUNDED (long to short HFP)
  2048  	op_LRL     uint32 = 0xC40D // FORMAT_RIL2       LOAD RELATIVE LONG (32)
  2049  	op_LRV     uint32 = 0xE31E // FORMAT_RXY1       LOAD REVERSED (32)
  2050  	op_LRVG    uint32 = 0xE30F // FORMAT_RXY1       LOAD REVERSED (64)
  2051  	op_LRVGR   uint32 = 0xB90F // FORMAT_RRE        LOAD REVERSED (64)
  2052  	op_LRVH    uint32 = 0xE31F // FORMAT_RXY1       LOAD REVERSED (16)
  2053  	op_LRVR    uint32 = 0xB91F // FORMAT_RRE        LOAD REVERSED (32)
  2054  	op_LT      uint32 = 0xE312 // FORMAT_RXY1       LOAD AND TEST (32)
  2055  	op_LTDBR   uint32 = 0xB312 // FORMAT_RRE        LOAD AND TEST (long BFP)
  2056  	op_LTDR    uint32 = 0x2200 // FORMAT_RR         LOAD AND TEST (long HFP)
  2057  	op_LTDTR   uint32 = 0xB3D6 // FORMAT_RRE        LOAD AND TEST (long DFP)
  2058  	op_LTEBR   uint32 = 0xB302 // FORMAT_RRE        LOAD AND TEST (short BFP)
  2059  	op_LTER    uint32 = 0x3200 // FORMAT_RR         LOAD AND TEST (short HFP)
  2060  	op_LTG     uint32 = 0xE302 // FORMAT_RXY1       LOAD AND TEST (64)
  2061  	op_LTGF    uint32 = 0xE332 // FORMAT_RXY1       LOAD AND TEST (64<-32)
  2062  	op_LTGFR   uint32 = 0xB912 // FORMAT_RRE        LOAD AND TEST (64<-32)
  2063  	op_LTGR    uint32 = 0xB902 // FORMAT_RRE        LOAD AND TEST (64)
  2064  	op_LTR     uint32 = 0x1200 // FORMAT_RR         LOAD AND TEST (32)
  2065  	op_LTXBR   uint32 = 0xB342 // FORMAT_RRE        LOAD AND TEST (extended BFP)
  2066  	op_LTXR    uint32 = 0xB362 // FORMAT_RRE        LOAD AND TEST (extended HFP)
  2067  	op_LTXTR   uint32 = 0xB3DE // FORMAT_RRE        LOAD AND TEST (extended DFP)
  2068  	op_LURA    uint32 = 0xB24B // FORMAT_RRE        LOAD USING REAL ADDRESS (32)
  2069  	op_LURAG   uint32 = 0xB905 // FORMAT_RRE        LOAD USING REAL ADDRESS (64)
  2070  	op_LXD     uint32 = 0xED25 // FORMAT_RXE        LOAD LENGTHENED (long to extended HFP)
  2071  	op_LXDB    uint32 = 0xED05 // FORMAT_RXE        LOAD LENGTHENED (long to extended BFP)
  2072  	op_LXDBR   uint32 = 0xB305 // FORMAT_RRE        LOAD LENGTHENED (long to extended BFP)
  2073  	op_LXDR    uint32 = 0xB325 // FORMAT_RRE        LOAD LENGTHENED (long to extended HFP)
  2074  	op_LXDTR   uint32 = 0xB3DC // FORMAT_RRF4       LOAD LENGTHENED (long to extended DFP)
  2075  	op_LXE     uint32 = 0xED26 // FORMAT_RXE        LOAD LENGTHENED (short to extended HFP)
  2076  	op_LXEB    uint32 = 0xED06 // FORMAT_RXE        LOAD LENGTHENED (short to extended BFP)
  2077  	op_LXEBR   uint32 = 0xB306 // FORMAT_RRE        LOAD LENGTHENED (short to extended BFP)
  2078  	op_LXER    uint32 = 0xB326 // FORMAT_RRE        LOAD LENGTHENED (short to extended HFP)
  2079  	op_LXR     uint32 = 0xB365 // FORMAT_RRE        LOAD (extended)
  2080  	op_LY      uint32 = 0xE358 // FORMAT_RXY1       LOAD (32)
  2081  	op_LZDR    uint32 = 0xB375 // FORMAT_RRE        LOAD ZERO (long)
  2082  	op_LZER    uint32 = 0xB374 // FORMAT_RRE        LOAD ZERO (short)
  2083  	op_LZXR    uint32 = 0xB376 // FORMAT_RRE        LOAD ZERO (extended)
  2084  	op_M       uint32 = 0x5C00 // FORMAT_RX1        MULTIPLY (64<-32)
  2085  	op_MAD     uint32 = 0xED3E // FORMAT_RXF        MULTIPLY AND ADD (long HFP)
  2086  	op_MADB    uint32 = 0xED1E // FORMAT_RXF        MULTIPLY AND ADD (long BFP)
  2087  	op_MADBR   uint32 = 0xB31E // FORMAT_RRD        MULTIPLY AND ADD (long BFP)
  2088  	op_MADR    uint32 = 0xB33E // FORMAT_RRD        MULTIPLY AND ADD (long HFP)
  2089  	op_MAE     uint32 = 0xED2E // FORMAT_RXF        MULTIPLY AND ADD (short HFP)
  2090  	op_MAEB    uint32 = 0xED0E // FORMAT_RXF        MULTIPLY AND ADD (short BFP)
  2091  	op_MAEBR   uint32 = 0xB30E // FORMAT_RRD        MULTIPLY AND ADD (short BFP)
  2092  	op_MAER    uint32 = 0xB32E // FORMAT_RRD        MULTIPLY AND ADD (short HFP)
  2093  	op_MAY     uint32 = 0xED3A // FORMAT_RXF        MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)
  2094  	op_MAYH    uint32 = 0xED3C // FORMAT_RXF        MULTIPLY AND ADD UNNRM. (long to ext. high HFP)
  2095  	op_MAYHR   uint32 = 0xB33C // FORMAT_RRD        MULTIPLY AND ADD UNNRM. (long to ext. high HFP)
  2096  	op_MAYL    uint32 = 0xED38 // FORMAT_RXF        MULTIPLY AND ADD UNNRM. (long to ext. low HFP)
  2097  	op_MAYLR   uint32 = 0xB338 // FORMAT_RRD        MULTIPLY AND ADD UNNRM. (long to ext. low HFP)
  2098  	op_MAYR    uint32 = 0xB33A // FORMAT_RRD        MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)
  2099  	op_MC      uint32 = 0xAF00 // FORMAT_SI         MONITOR CALL
  2100  	op_MD      uint32 = 0x6C00 // FORMAT_RX1        MULTIPLY (long HFP)
  2101  	op_MDB     uint32 = 0xED1C // FORMAT_RXE        MULTIPLY (long BFP)
  2102  	op_MDBR    uint32 = 0xB31C // FORMAT_RRE        MULTIPLY (long BFP)
  2103  	op_MDE     uint32 = 0x7C00 // FORMAT_RX1        MULTIPLY (short to long HFP)
  2104  	op_MDEB    uint32 = 0xED0C // FORMAT_RXE        MULTIPLY (short to long BFP)
  2105  	op_MDEBR   uint32 = 0xB30C // FORMAT_RRE        MULTIPLY (short to long BFP)
  2106  	op_MDER    uint32 = 0x3C00 // FORMAT_RR         MULTIPLY (short to long HFP)
  2107  	op_MDR     uint32 = 0x2C00 // FORMAT_RR         MULTIPLY (long HFP)
  2108  	op_MDTR    uint32 = 0xB3D0 // FORMAT_RRF1       MULTIPLY (long DFP)
  2109  	op_MDTRA   uint32 = 0xB3D0 // FORMAT_RRF1       MULTIPLY (long DFP)
  2110  	op_ME      uint32 = 0x7C00 // FORMAT_RX1        MULTIPLY (short to long HFP)
  2111  	op_MEE     uint32 = 0xED37 // FORMAT_RXE        MULTIPLY (short HFP)
  2112  	op_MEEB    uint32 = 0xED17 // FORMAT_RXE        MULTIPLY (short BFP)
  2113  	op_MEEBR   uint32 = 0xB317 // FORMAT_RRE        MULTIPLY (short BFP)
  2114  	op_MEER    uint32 = 0xB337 // FORMAT_RRE        MULTIPLY (short HFP)
  2115  	op_MER     uint32 = 0x3C00 // FORMAT_RR         MULTIPLY (short to long HFP)
  2116  	op_MFY     uint32 = 0xE35C // FORMAT_RXY1       MULTIPLY (64<-32)
  2117  	op_MGHI    uint32 = 0xA70D // FORMAT_RI1        MULTIPLY HALFWORD IMMEDIATE (64)
  2118  	op_MH      uint32 = 0x4C00 // FORMAT_RX1        MULTIPLY HALFWORD (32)
  2119  	op_MHI     uint32 = 0xA70C // FORMAT_RI1        MULTIPLY HALFWORD IMMEDIATE (32)
  2120  	op_MHY     uint32 = 0xE37C // FORMAT_RXY1       MULTIPLY HALFWORD (32)
  2121  	op_ML      uint32 = 0xE396 // FORMAT_RXY1       MULTIPLY LOGICAL (64<-32)
  2122  	op_MLG     uint32 = 0xE386 // FORMAT_RXY1       MULTIPLY LOGICAL (128<-64)
  2123  	op_MLGR    uint32 = 0xB986 // FORMAT_RRE        MULTIPLY LOGICAL (128<-64)
  2124  	op_MLR     uint32 = 0xB996 // FORMAT_RRE        MULTIPLY LOGICAL (64<-32)
  2125  	op_MP      uint32 = 0xFC00 // FORMAT_SS2        MULTIPLY DECIMAL
  2126  	op_MR      uint32 = 0x1C00 // FORMAT_RR         MULTIPLY (64<-32)
  2127  	op_MS      uint32 = 0x7100 // FORMAT_RX1        MULTIPLY SINGLE (32)
  2128  	op_MSCH    uint32 = 0xB232 // FORMAT_S          MODIFY SUBCHANNEL
  2129  	op_MSD     uint32 = 0xED3F // FORMAT_RXF        MULTIPLY AND SUBTRACT (long HFP)
  2130  	op_MSDB    uint32 = 0xED1F // FORMAT_RXF        MULTIPLY AND SUBTRACT (long BFP)
  2131  	op_MSDBR   uint32 = 0xB31F // FORMAT_RRD        MULTIPLY AND SUBTRACT (long BFP)
  2132  	op_MSDR    uint32 = 0xB33F // FORMAT_RRD        MULTIPLY AND SUBTRACT (long HFP)
  2133  	op_MSE     uint32 = 0xED2F // FORMAT_RXF        MULTIPLY AND SUBTRACT (short HFP)
  2134  	op_MSEB    uint32 = 0xED0F // FORMAT_RXF        MULTIPLY AND SUBTRACT (short BFP)
  2135  	op_MSEBR   uint32 = 0xB30F // FORMAT_RRD        MULTIPLY AND SUBTRACT (short BFP)
  2136  	op_MSER    uint32 = 0xB32F // FORMAT_RRD        MULTIPLY AND SUBTRACT (short HFP)
  2137  	op_MSFI    uint32 = 0xC201 // FORMAT_RIL1       MULTIPLY SINGLE IMMEDIATE (32)
  2138  	op_MSG     uint32 = 0xE30C // FORMAT_RXY1       MULTIPLY SINGLE (64)
  2139  	op_MSGF    uint32 = 0xE31C // FORMAT_RXY1       MULTIPLY SINGLE (64<-32)
  2140  	op_MSGFI   uint32 = 0xC200 // FORMAT_RIL1       MULTIPLY SINGLE IMMEDIATE (64<-32)
  2141  	op_MSGFR   uint32 = 0xB91C // FORMAT_RRE        MULTIPLY SINGLE (64<-32)
  2142  	op_MSGR    uint32 = 0xB90C // FORMAT_RRE        MULTIPLY SINGLE (64)
  2143  	op_MSR     uint32 = 0xB252 // FORMAT_RRE        MULTIPLY SINGLE (32)
  2144  	op_MSTA    uint32 = 0xB247 // FORMAT_RRE        MODIFY STACKED STATE
  2145  	op_MSY     uint32 = 0xE351 // FORMAT_RXY1       MULTIPLY SINGLE (32)
  2146  	op_MVC     uint32 = 0xD200 // FORMAT_SS1        MOVE (character)
  2147  	op_MVCDK   uint32 = 0xE50F // FORMAT_SSE        MOVE WITH DESTINATION KEY
  2148  	op_MVCIN   uint32 = 0xE800 // FORMAT_SS1        MOVE INVERSE
  2149  	op_MVCK    uint32 = 0xD900 // FORMAT_SS4        MOVE WITH KEY
  2150  	op_MVCL    uint32 = 0x0E00 // FORMAT_RR         MOVE LONG
  2151  	op_MVCLE   uint32 = 0xA800 // FORMAT_RS1        MOVE LONG EXTENDED
  2152  	op_MVCLU   uint32 = 0xEB8E // FORMAT_RSY1       MOVE LONG UNICODE
  2153  	op_MVCOS   uint32 = 0xC800 // FORMAT_SSF        MOVE WITH OPTIONAL SPECIFICATIONS
  2154  	op_MVCP    uint32 = 0xDA00 // FORMAT_SS4        MOVE TO PRIMARY
  2155  	op_MVCS    uint32 = 0xDB00 // FORMAT_SS4        MOVE TO SECONDARY
  2156  	op_MVCSK   uint32 = 0xE50E // FORMAT_SSE        MOVE WITH SOURCE KEY
  2157  	op_MVGHI   uint32 = 0xE548 // FORMAT_SIL        MOVE (64<-16)
  2158  	op_MVHHI   uint32 = 0xE544 // FORMAT_SIL        MOVE (16<-16)
  2159  	op_MVHI    uint32 = 0xE54C // FORMAT_SIL        MOVE (32<-16)
  2160  	op_MVI     uint32 = 0x9200 // FORMAT_SI         MOVE (immediate)
  2161  	op_MVIY    uint32 = 0xEB52 // FORMAT_SIY        MOVE (immediate)
  2162  	op_MVN     uint32 = 0xD100 // FORMAT_SS1        MOVE NUMERICS
  2163  	op_MVO     uint32 = 0xF100 // FORMAT_SS2        MOVE WITH OFFSET
  2164  	op_MVPG    uint32 = 0xB254 // FORMAT_RRE        MOVE PAGE
  2165  	op_MVST    uint32 = 0xB255 // FORMAT_RRE        MOVE STRING
  2166  	op_MVZ     uint32 = 0xD300 // FORMAT_SS1        MOVE ZONES
  2167  	op_MXBR    uint32 = 0xB34C // FORMAT_RRE        MULTIPLY (extended BFP)
  2168  	op_MXD     uint32 = 0x6700 // FORMAT_RX1        MULTIPLY (long to extended HFP)
  2169  	op_MXDB    uint32 = 0xED07 // FORMAT_RXE        MULTIPLY (long to extended BFP)
  2170  	op_MXDBR   uint32 = 0xB307 // FORMAT_RRE        MULTIPLY (long to extended BFP)
  2171  	op_MXDR    uint32 = 0x2700 // FORMAT_RR         MULTIPLY (long to extended HFP)
  2172  	op_MXR     uint32 = 0x2600 // FORMAT_RR         MULTIPLY (extended HFP)
  2173  	op_MXTR    uint32 = 0xB3D8 // FORMAT_RRF1       MULTIPLY (extended DFP)
  2174  	op_MXTRA   uint32 = 0xB3D8 // FORMAT_RRF1       MULTIPLY (extended DFP)
  2175  	op_MY      uint32 = 0xED3B // FORMAT_RXF        MULTIPLY UNNORMALIZED (long to ext. HFP)
  2176  	op_MYH     uint32 = 0xED3D // FORMAT_RXF        MULTIPLY UNNORM. (long to ext. high HFP)
  2177  	op_MYHR    uint32 = 0xB33D // FORMAT_RRD        MULTIPLY UNNORM. (long to ext. high HFP)
  2178  	op_MYL     uint32 = 0xED39 // FORMAT_RXF        MULTIPLY UNNORM. (long to ext. low HFP)
  2179  	op_MYLR    uint32 = 0xB339 // FORMAT_RRD        MULTIPLY UNNORM. (long to ext. low HFP)
  2180  	op_MYR     uint32 = 0xB33B // FORMAT_RRD        MULTIPLY UNNORMALIZED (long to ext. HFP)
  2181  	op_N       uint32 = 0x5400 // FORMAT_RX1        AND (32)
  2182  	op_NC      uint32 = 0xD400 // FORMAT_SS1        AND (character)
  2183  	op_NG      uint32 = 0xE380 // FORMAT_RXY1       AND (64)
  2184  	op_NGR     uint32 = 0xB980 // FORMAT_RRE        AND (64)
  2185  	op_NGRK    uint32 = 0xB9E4 // FORMAT_RRF1       AND (64)
  2186  	op_NI      uint32 = 0x9400 // FORMAT_SI         AND (immediate)
  2187  	op_NIAI    uint32 = 0xB2FA // FORMAT_IE         NEXT INSTRUCTION ACCESS INTENT
  2188  	op_NIHF    uint32 = 0xC00A // FORMAT_RIL1       AND IMMEDIATE (high)
  2189  	op_NIHH    uint32 = 0xA504 // FORMAT_RI1        AND IMMEDIATE (high high)
  2190  	op_NIHL    uint32 = 0xA505 // FORMAT_RI1        AND IMMEDIATE (high low)
  2191  	op_NILF    uint32 = 0xC00B // FORMAT_RIL1       AND IMMEDIATE (low)
  2192  	op_NILH    uint32 = 0xA506 // FORMAT_RI1        AND IMMEDIATE (low high)
  2193  	op_NILL    uint32 = 0xA507 // FORMAT_RI1        AND IMMEDIATE (low low)
  2194  	op_NIY     uint32 = 0xEB54 // FORMAT_SIY        AND (immediate)
  2195  	op_NR      uint32 = 0x1400 // FORMAT_RR         AND (32)
  2196  	op_NRK     uint32 = 0xB9F4 // FORMAT_RRF1       AND (32)
  2197  	op_NTSTG   uint32 = 0xE325 // FORMAT_RXY1       NONTRANSACTIONAL STORE
  2198  	op_NY      uint32 = 0xE354 // FORMAT_RXY1       AND (32)
  2199  	op_O       uint32 = 0x5600 // FORMAT_RX1        OR (32)
  2200  	op_OC      uint32 = 0xD600 // FORMAT_SS1        OR (character)
  2201  	op_OG      uint32 = 0xE381 // FORMAT_RXY1       OR (64)
  2202  	op_OGR     uint32 = 0xB981 // FORMAT_RRE        OR (64)
  2203  	op_OGRK    uint32 = 0xB9E6 // FORMAT_RRF1       OR (64)
  2204  	op_OI      uint32 = 0x9600 // FORMAT_SI         OR (immediate)
  2205  	op_OIHF    uint32 = 0xC00C // FORMAT_RIL1       OR IMMEDIATE (high)
  2206  	op_OIHH    uint32 = 0xA508 // FORMAT_RI1        OR IMMEDIATE (high high)
  2207  	op_OIHL    uint32 = 0xA509 // FORMAT_RI1        OR IMMEDIATE (high low)
  2208  	op_OILF    uint32 = 0xC00D // FORMAT_RIL1       OR IMMEDIATE (low)
  2209  	op_OILH    uint32 = 0xA50A // FORMAT_RI1        OR IMMEDIATE (low high)
  2210  	op_OILL    uint32 = 0xA50B // FORMAT_RI1        OR IMMEDIATE (low low)
  2211  	op_OIY     uint32 = 0xEB56 // FORMAT_SIY        OR (immediate)
  2212  	op_OR      uint32 = 0x1600 // FORMAT_RR         OR (32)
  2213  	op_ORK     uint32 = 0xB9F6 // FORMAT_RRF1       OR (32)
  2214  	op_OY      uint32 = 0xE356 // FORMAT_RXY1       OR (32)
  2215  	op_PACK    uint32 = 0xF200 // FORMAT_SS2        PACK
  2216  	op_PALB    uint32 = 0xB248 // FORMAT_RRE        PURGE ALB
  2217  	op_PC      uint32 = 0xB218 // FORMAT_S          PROGRAM CALL
  2218  	op_PCC     uint32 = 0xB92C // FORMAT_RRE        PERFORM CRYPTOGRAPHIC COMPUTATION
  2219  	op_PCKMO   uint32 = 0xB928 // FORMAT_RRE        PERFORM CRYPTOGRAPHIC KEY MGMT. OPERATIONS
  2220  	op_PFD     uint32 = 0xE336 // FORMAT_RXY2       PREFETCH DATA
  2221  	op_PFDRL   uint32 = 0xC602 // FORMAT_RIL3       PREFETCH DATA RELATIVE LONG
  2222  	op_PFMF    uint32 = 0xB9AF // FORMAT_RRE        PERFORM FRAME MANAGEMENT FUNCTION
  2223  	op_PFPO    uint32 = 0x010A // FORMAT_E          PERFORM FLOATING-POINT OPERATION
  2224  	op_PGIN    uint32 = 0xB22E // FORMAT_RRE        PAGE IN
  2225  	op_PGOUT   uint32 = 0xB22F // FORMAT_RRE        PAGE OUT
  2226  	op_PKA     uint32 = 0xE900 // FORMAT_SS6        PACK ASCII
  2227  	op_PKU     uint32 = 0xE100 // FORMAT_SS6        PACK UNICODE
  2228  	op_PLO     uint32 = 0xEE00 // FORMAT_SS5        PERFORM LOCKED OPERATION
  2229  	op_POPCNT  uint32 = 0xB9E1 // FORMAT_RRE        POPULATION COUNT
  2230  	op_PPA     uint32 = 0xB2E8 // FORMAT_RRF3       PERFORM PROCESSOR ASSIST
  2231  	op_PR      uint32 = 0x0101 // FORMAT_E          PROGRAM RETURN
  2232  	op_PT      uint32 = 0xB228 // FORMAT_RRE        PROGRAM TRANSFER
  2233  	op_PTF     uint32 = 0xB9A2 // FORMAT_RRE        PERFORM TOPOLOGY FUNCTION
  2234  	op_PTFF    uint32 = 0x0104 // FORMAT_E          PERFORM TIMING FACILITY FUNCTION
  2235  	op_PTI     uint32 = 0xB99E // FORMAT_RRE        PROGRAM TRANSFER WITH INSTANCE
  2236  	op_PTLB    uint32 = 0xB20D // FORMAT_S          PURGE TLB
  2237  	op_QADTR   uint32 = 0xB3F5 // FORMAT_RRF2       QUANTIZE (long DFP)
  2238  	op_QAXTR   uint32 = 0xB3FD // FORMAT_RRF2       QUANTIZE (extended DFP)
  2239  	op_RCHP    uint32 = 0xB23B // FORMAT_S          RESET CHANNEL PATH
  2240  	op_RISBG   uint32 = 0xEC55 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS
  2241  	op_RISBGN  uint32 = 0xEC59 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS
  2242  	op_RISBHG  uint32 = 0xEC5D // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS HIGH
  2243  	op_RISBLG  uint32 = 0xEC51 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS LOW
  2244  	op_RLL     uint32 = 0xEB1D // FORMAT_RSY1       ROTATE LEFT SINGLE LOGICAL (32)
  2245  	op_RLLG    uint32 = 0xEB1C // FORMAT_RSY1       ROTATE LEFT SINGLE LOGICAL (64)
  2246  	op_RNSBG   uint32 = 0xEC54 // FORMAT_RIE6       ROTATE THEN AND SELECTED BITS
  2247  	op_ROSBG   uint32 = 0xEC56 // FORMAT_RIE6       ROTATE THEN OR SELECTED BITS
  2248  	op_RP      uint32 = 0xB277 // FORMAT_S          RESUME PROGRAM
  2249  	op_RRBE    uint32 = 0xB22A // FORMAT_RRE        RESET REFERENCE BIT EXTENDED
  2250  	op_RRBM    uint32 = 0xB9AE // FORMAT_RRE        RESET REFERENCE BITS MULTIPLE
  2251  	op_RRDTR   uint32 = 0xB3F7 // FORMAT_RRF2       REROUND (long DFP)
  2252  	op_RRXTR   uint32 = 0xB3FF // FORMAT_RRF2       REROUND (extended DFP)
  2253  	op_RSCH    uint32 = 0xB238 // FORMAT_S          RESUME SUBCHANNEL
  2254  	op_RXSBG   uint32 = 0xEC57 // FORMAT_RIE6       ROTATE THEN EXCLUSIVE OR SELECTED BITS
  2255  	op_S       uint32 = 0x5B00 // FORMAT_RX1        SUBTRACT (32)
  2256  	op_SAC     uint32 = 0xB219 // FORMAT_S          SET ADDRESS SPACE CONTROL
  2257  	op_SACF    uint32 = 0xB279 // FORMAT_S          SET ADDRESS SPACE CONTROL FAST
  2258  	op_SAL     uint32 = 0xB237 // FORMAT_S          SET ADDRESS LIMIT
  2259  	op_SAM24   uint32 = 0x010C // FORMAT_E          SET ADDRESSING MODE (24)
  2260  	op_SAM31   uint32 = 0x010D // FORMAT_E          SET ADDRESSING MODE (31)
  2261  	op_SAM64   uint32 = 0x010E // FORMAT_E          SET ADDRESSING MODE (64)
  2262  	op_SAR     uint32 = 0xB24E // FORMAT_RRE        SET ACCESS
  2263  	op_SCHM    uint32 = 0xB23C // FORMAT_S          SET CHANNEL MONITOR
  2264  	op_SCK     uint32 = 0xB204 // FORMAT_S          SET CLOCK
  2265  	op_SCKC    uint32 = 0xB206 // FORMAT_S          SET CLOCK COMPARATOR
  2266  	op_SCKPF   uint32 = 0x0107 // FORMAT_E          SET CLOCK PROGRAMMABLE FIELD
  2267  	op_SD      uint32 = 0x6B00 // FORMAT_RX1        SUBTRACT NORMALIZED (long HFP)
  2268  	op_SDB     uint32 = 0xED1B // FORMAT_RXE        SUBTRACT (long BFP)
  2269  	op_SDBR    uint32 = 0xB31B // FORMAT_RRE        SUBTRACT (long BFP)
  2270  	op_SDR     uint32 = 0x2B00 // FORMAT_RR         SUBTRACT NORMALIZED (long HFP)
  2271  	op_SDTR    uint32 = 0xB3D3 // FORMAT_RRF1       SUBTRACT (long DFP)
  2272  	op_SDTRA   uint32 = 0xB3D3 // FORMAT_RRF1       SUBTRACT (long DFP)
  2273  	op_SE      uint32 = 0x7B00 // FORMAT_RX1        SUBTRACT NORMALIZED (short HFP)
  2274  	op_SEB     uint32 = 0xED0B // FORMAT_RXE        SUBTRACT (short BFP)
  2275  	op_SEBR    uint32 = 0xB30B // FORMAT_RRE        SUBTRACT (short BFP)
  2276  	op_SER     uint32 = 0x3B00 // FORMAT_RR         SUBTRACT NORMALIZED (short HFP)
  2277  	op_SFASR   uint32 = 0xB385 // FORMAT_RRE        SET FPC AND SIGNAL
  2278  	op_SFPC    uint32 = 0xB384 // FORMAT_RRE        SET FPC
  2279  	op_SG      uint32 = 0xE309 // FORMAT_RXY1       SUBTRACT (64)
  2280  	op_SGF     uint32 = 0xE319 // FORMAT_RXY1       SUBTRACT (64<-32)
  2281  	op_SGFR    uint32 = 0xB919 // FORMAT_RRE        SUBTRACT (64<-32)
  2282  	op_SGR     uint32 = 0xB909 // FORMAT_RRE        SUBTRACT (64)
  2283  	op_SGRK    uint32 = 0xB9E9 // FORMAT_RRF1       SUBTRACT (64)
  2284  	op_SH      uint32 = 0x4B00 // FORMAT_RX1        SUBTRACT HALFWORD
  2285  	op_SHHHR   uint32 = 0xB9C9 // FORMAT_RRF1       SUBTRACT HIGH (32)
  2286  	op_SHHLR   uint32 = 0xB9D9 // FORMAT_RRF1       SUBTRACT HIGH (32)
  2287  	op_SHY     uint32 = 0xE37B // FORMAT_RXY1       SUBTRACT HALFWORD
  2288  	op_SIGP    uint32 = 0xAE00 // FORMAT_RS1        SIGNAL PROCESSOR
  2289  	op_SL      uint32 = 0x5F00 // FORMAT_RX1        SUBTRACT LOGICAL (32)
  2290  	op_SLA     uint32 = 0x8B00 // FORMAT_RS1        SHIFT LEFT SINGLE (32)
  2291  	op_SLAG    uint32 = 0xEB0B // FORMAT_RSY1       SHIFT LEFT SINGLE (64)
  2292  	op_SLAK    uint32 = 0xEBDD // FORMAT_RSY1       SHIFT LEFT SINGLE (32)
  2293  	op_SLB     uint32 = 0xE399 // FORMAT_RXY1       SUBTRACT LOGICAL WITH BORROW (32)
  2294  	op_SLBG    uint32 = 0xE389 // FORMAT_RXY1       SUBTRACT LOGICAL WITH BORROW (64)
  2295  	op_SLBGR   uint32 = 0xB989 // FORMAT_RRE        SUBTRACT LOGICAL WITH BORROW (64)
  2296  	op_SLBR    uint32 = 0xB999 // FORMAT_RRE        SUBTRACT LOGICAL WITH BORROW (32)
  2297  	op_SLDA    uint32 = 0x8F00 // FORMAT_RS1        SHIFT LEFT DOUBLE
  2298  	op_SLDL    uint32 = 0x8D00 // FORMAT_RS1        SHIFT LEFT DOUBLE LOGICAL
  2299  	op_SLDT    uint32 = 0xED40 // FORMAT_RXF        SHIFT SIGNIFICAND LEFT (long DFP)
  2300  	op_SLFI    uint32 = 0xC205 // FORMAT_RIL1       SUBTRACT LOGICAL IMMEDIATE (32)
  2301  	op_SLG     uint32 = 0xE30B // FORMAT_RXY1       SUBTRACT LOGICAL (64)
  2302  	op_SLGF    uint32 = 0xE31B // FORMAT_RXY1       SUBTRACT LOGICAL (64<-32)
  2303  	op_SLGFI   uint32 = 0xC204 // FORMAT_RIL1       SUBTRACT LOGICAL IMMEDIATE (64<-32)
  2304  	op_SLGFR   uint32 = 0xB91B // FORMAT_RRE        SUBTRACT LOGICAL (64<-32)
  2305  	op_SLGR    uint32 = 0xB90B // FORMAT_RRE        SUBTRACT LOGICAL (64)
  2306  	op_SLGRK   uint32 = 0xB9EB // FORMAT_RRF1       SUBTRACT LOGICAL (64)
  2307  	op_SLHHHR  uint32 = 0xB9CB // FORMAT_RRF1       SUBTRACT LOGICAL HIGH (32)
  2308  	op_SLHHLR  uint32 = 0xB9DB // FORMAT_RRF1       SUBTRACT LOGICAL HIGH (32)
  2309  	op_SLL     uint32 = 0x8900 // FORMAT_RS1        SHIFT LEFT SINGLE LOGICAL (32)
  2310  	op_SLLG    uint32 = 0xEB0D // FORMAT_RSY1       SHIFT LEFT SINGLE LOGICAL (64)
  2311  	op_SLLK    uint32 = 0xEBDF // FORMAT_RSY1       SHIFT LEFT SINGLE LOGICAL (32)
  2312  	op_SLR     uint32 = 0x1F00 // FORMAT_RR         SUBTRACT LOGICAL (32)
  2313  	op_SLRK    uint32 = 0xB9FB // FORMAT_RRF1       SUBTRACT LOGICAL (32)
  2314  	op_SLXT    uint32 = 0xED48 // FORMAT_RXF        SHIFT SIGNIFICAND LEFT (extended DFP)
  2315  	op_SLY     uint32 = 0xE35F // FORMAT_RXY1       SUBTRACT LOGICAL (32)
  2316  	op_SP      uint32 = 0xFB00 // FORMAT_SS2        SUBTRACT DECIMAL
  2317  	op_SPKA    uint32 = 0xB20A // FORMAT_S          SET PSW KEY FROM ADDRESS
  2318  	op_SPM     uint32 = 0x0400 // FORMAT_RR         SET PROGRAM MASK
  2319  	op_SPT     uint32 = 0xB208 // FORMAT_S          SET CPU TIMER
  2320  	op_SPX     uint32 = 0xB210 // FORMAT_S          SET PREFIX
  2321  	op_SQD     uint32 = 0xED35 // FORMAT_RXE        SQUARE ROOT (long HFP)
  2322  	op_SQDB    uint32 = 0xED15 // FORMAT_RXE        SQUARE ROOT (long BFP)
  2323  	op_SQDBR   uint32 = 0xB315 // FORMAT_RRE        SQUARE ROOT (long BFP)
  2324  	op_SQDR    uint32 = 0xB244 // FORMAT_RRE        SQUARE ROOT (long HFP)
  2325  	op_SQE     uint32 = 0xED34 // FORMAT_RXE        SQUARE ROOT (short HFP)
  2326  	op_SQEB    uint32 = 0xED14 // FORMAT_RXE        SQUARE ROOT (short BFP)
  2327  	op_SQEBR   uint32 = 0xB314 // FORMAT_RRE        SQUARE ROOT (short BFP)
  2328  	op_SQER    uint32 = 0xB245 // FORMAT_RRE        SQUARE ROOT (short HFP)
  2329  	op_SQXBR   uint32 = 0xB316 // FORMAT_RRE        SQUARE ROOT (extended BFP)
  2330  	op_SQXR    uint32 = 0xB336 // FORMAT_RRE        SQUARE ROOT (extended HFP)
  2331  	op_SR      uint32 = 0x1B00 // FORMAT_RR         SUBTRACT (32)
  2332  	op_SRA     uint32 = 0x8A00 // FORMAT_RS1        SHIFT RIGHT SINGLE (32)
  2333  	op_SRAG    uint32 = 0xEB0A // FORMAT_RSY1       SHIFT RIGHT SINGLE (64)
  2334  	op_SRAK    uint32 = 0xEBDC // FORMAT_RSY1       SHIFT RIGHT SINGLE (32)
  2335  	op_SRDA    uint32 = 0x8E00 // FORMAT_RS1        SHIFT RIGHT DOUBLE
  2336  	op_SRDL    uint32 = 0x8C00 // FORMAT_RS1        SHIFT RIGHT DOUBLE LOGICAL
  2337  	op_SRDT    uint32 = 0xED41 // FORMAT_RXF        SHIFT SIGNIFICAND RIGHT (long DFP)
  2338  	op_SRK     uint32 = 0xB9F9 // FORMAT_RRF1       SUBTRACT (32)
  2339  	op_SRL     uint32 = 0x8800 // FORMAT_RS1        SHIFT RIGHT SINGLE LOGICAL (32)
  2340  	op_SRLG    uint32 = 0xEB0C // FORMAT_RSY1       SHIFT RIGHT SINGLE LOGICAL (64)
  2341  	op_SRLK    uint32 = 0xEBDE // FORMAT_RSY1       SHIFT RIGHT SINGLE LOGICAL (32)
  2342  	op_SRNM    uint32 = 0xB299 // FORMAT_S          SET BFP ROUNDING MODE (2 bit)
  2343  	op_SRNMB   uint32 = 0xB2B8 // FORMAT_S          SET BFP ROUNDING MODE (3 bit)
  2344  	op_SRNMT   uint32 = 0xB2B9 // FORMAT_S          SET DFP ROUNDING MODE
  2345  	op_SRP     uint32 = 0xF000 // FORMAT_SS3        SHIFT AND ROUND DECIMAL
  2346  	op_SRST    uint32 = 0xB25E // FORMAT_RRE        SEARCH STRING
  2347  	op_SRSTU   uint32 = 0xB9BE // FORMAT_RRE        SEARCH STRING UNICODE
  2348  	op_SRXT    uint32 = 0xED49 // FORMAT_RXF        SHIFT SIGNIFICAND RIGHT (extended DFP)
  2349  	op_SSAIR   uint32 = 0xB99F // FORMAT_RRE        SET SECONDARY ASN WITH INSTANCE
  2350  	op_SSAR    uint32 = 0xB225 // FORMAT_RRE        SET SECONDARY ASN
  2351  	op_SSCH    uint32 = 0xB233 // FORMAT_S          START SUBCHANNEL
  2352  	op_SSKE    uint32 = 0xB22B // FORMAT_RRF3       SET STORAGE KEY EXTENDED
  2353  	op_SSM     uint32 = 0x8000 // FORMAT_S          SET SYSTEM MASK
  2354  	op_ST      uint32 = 0x5000 // FORMAT_RX1        STORE (32)
  2355  	op_STAM    uint32 = 0x9B00 // FORMAT_RS1        STORE ACCESS MULTIPLE
  2356  	op_STAMY   uint32 = 0xEB9B // FORMAT_RSY1       STORE ACCESS MULTIPLE
  2357  	op_STAP    uint32 = 0xB212 // FORMAT_S          STORE CPU ADDRESS
  2358  	op_STC     uint32 = 0x4200 // FORMAT_RX1        STORE CHARACTER
  2359  	op_STCH    uint32 = 0xE3C3 // FORMAT_RXY1       STORE CHARACTER HIGH (8)
  2360  	op_STCK    uint32 = 0xB205 // FORMAT_S          STORE CLOCK
  2361  	op_STCKC   uint32 = 0xB207 // FORMAT_S          STORE CLOCK COMPARATOR
  2362  	op_STCKE   uint32 = 0xB278 // FORMAT_S          STORE CLOCK EXTENDED
  2363  	op_STCKF   uint32 = 0xB27C // FORMAT_S          STORE CLOCK FAST
  2364  	op_STCM    uint32 = 0xBE00 // FORMAT_RS2        STORE CHARACTERS UNDER MASK (low)
  2365  	op_STCMH   uint32 = 0xEB2C // FORMAT_RSY2       STORE CHARACTERS UNDER MASK (high)
  2366  	op_STCMY   uint32 = 0xEB2D // FORMAT_RSY2       STORE CHARACTERS UNDER MASK (low)
  2367  	op_STCPS   uint32 = 0xB23A // FORMAT_S          STORE CHANNEL PATH STATUS
  2368  	op_STCRW   uint32 = 0xB239 // FORMAT_S          STORE CHANNEL REPORT WORD
  2369  	op_STCTG   uint32 = 0xEB25 // FORMAT_RSY1       STORE CONTROL (64)
  2370  	op_STCTL   uint32 = 0xB600 // FORMAT_RS1        STORE CONTROL (32)
  2371  	op_STCY    uint32 = 0xE372 // FORMAT_RXY1       STORE CHARACTER
  2372  	op_STD     uint32 = 0x6000 // FORMAT_RX1        STORE (long)
  2373  	op_STDY    uint32 = 0xED67 // FORMAT_RXY1       STORE (long)
  2374  	op_STE     uint32 = 0x7000 // FORMAT_RX1        STORE (short)
  2375  	op_STEY    uint32 = 0xED66 // FORMAT_RXY1       STORE (short)
  2376  	op_STFH    uint32 = 0xE3CB // FORMAT_RXY1       STORE HIGH (32)
  2377  	op_STFL    uint32 = 0xB2B1 // FORMAT_S          STORE FACILITY LIST
  2378  	op_STFLE   uint32 = 0xB2B0 // FORMAT_S          STORE FACILITY LIST EXTENDED
  2379  	op_STFPC   uint32 = 0xB29C // FORMAT_S          STORE FPC
  2380  	op_STG     uint32 = 0xE324 // FORMAT_RXY1       STORE (64)
  2381  	op_STGRL   uint32 = 0xC40B // FORMAT_RIL2       STORE RELATIVE LONG (64)
  2382  	op_STH     uint32 = 0x4000 // FORMAT_RX1        STORE HALFWORD
  2383  	op_STHH    uint32 = 0xE3C7 // FORMAT_RXY1       STORE HALFWORD HIGH (16)
  2384  	op_STHRL   uint32 = 0xC407 // FORMAT_RIL2       STORE HALFWORD RELATIVE LONG
  2385  	op_STHY    uint32 = 0xE370 // FORMAT_RXY1       STORE HALFWORD
  2386  	op_STIDP   uint32 = 0xB202 // FORMAT_S          STORE CPU ID
  2387  	op_STM     uint32 = 0x9000 // FORMAT_RS1        STORE MULTIPLE (32)
  2388  	op_STMG    uint32 = 0xEB24 // FORMAT_RSY1       STORE MULTIPLE (64)
  2389  	op_STMH    uint32 = 0xEB26 // FORMAT_RSY1       STORE MULTIPLE HIGH
  2390  	op_STMY    uint32 = 0xEB90 // FORMAT_RSY1       STORE MULTIPLE (32)
  2391  	op_STNSM   uint32 = 0xAC00 // FORMAT_SI         STORE THEN AND SYSTEM MASK
  2392  	op_STOC    uint32 = 0xEBF3 // FORMAT_RSY2       STORE ON CONDITION (32)
  2393  	op_STOCG   uint32 = 0xEBE3 // FORMAT_RSY2       STORE ON CONDITION (64)
  2394  	op_STOSM   uint32 = 0xAD00 // FORMAT_SI         STORE THEN OR SYSTEM MASK
  2395  	op_STPQ    uint32 = 0xE38E // FORMAT_RXY1       STORE PAIR TO QUADWORD
  2396  	op_STPT    uint32 = 0xB209 // FORMAT_S          STORE CPU TIMER
  2397  	op_STPX    uint32 = 0xB211 // FORMAT_S          STORE PREFIX
  2398  	op_STRAG   uint32 = 0xE502 // FORMAT_SSE        STORE REAL ADDRESS
  2399  	op_STRL    uint32 = 0xC40F // FORMAT_RIL2       STORE RELATIVE LONG (32)
  2400  	op_STRV    uint32 = 0xE33E // FORMAT_RXY1       STORE REVERSED (32)
  2401  	op_STRVG   uint32 = 0xE32F // FORMAT_RXY1       STORE REVERSED (64)
  2402  	op_STRVH   uint32 = 0xE33F // FORMAT_RXY1       STORE REVERSED (16)
  2403  	op_STSCH   uint32 = 0xB234 // FORMAT_S          STORE SUBCHANNEL
  2404  	op_STSI    uint32 = 0xB27D // FORMAT_S          STORE SYSTEM INFORMATION
  2405  	op_STURA   uint32 = 0xB246 // FORMAT_RRE        STORE USING REAL ADDRESS (32)
  2406  	op_STURG   uint32 = 0xB925 // FORMAT_RRE        STORE USING REAL ADDRESS (64)
  2407  	op_STY     uint32 = 0xE350 // FORMAT_RXY1       STORE (32)
  2408  	op_SU      uint32 = 0x7F00 // FORMAT_RX1        SUBTRACT UNNORMALIZED (short HFP)
  2409  	op_SUR     uint32 = 0x3F00 // FORMAT_RR         SUBTRACT UNNORMALIZED (short HFP)
  2410  	op_SVC     uint32 = 0x0A00 // FORMAT_I          SUPERVISOR CALL
  2411  	op_SW      uint32 = 0x6F00 // FORMAT_RX1        SUBTRACT UNNORMALIZED (long HFP)
  2412  	op_SWR     uint32 = 0x2F00 // FORMAT_RR         SUBTRACT UNNORMALIZED (long HFP)
  2413  	op_SXBR    uint32 = 0xB34B // FORMAT_RRE        SUBTRACT (extended BFP)
  2414  	op_SXR     uint32 = 0x3700 // FORMAT_RR         SUBTRACT NORMALIZED (extended HFP)
  2415  	op_SXTR    uint32 = 0xB3DB // FORMAT_RRF1       SUBTRACT (extended DFP)
  2416  	op_SXTRA   uint32 = 0xB3DB // FORMAT_RRF1       SUBTRACT (extended DFP)
  2417  	op_SY      uint32 = 0xE35B // FORMAT_RXY1       SUBTRACT (32)
  2418  	op_TABORT  uint32 = 0xB2FC // FORMAT_S          TRANSACTION ABORT
  2419  	op_TAM     uint32 = 0x010B // FORMAT_E          TEST ADDRESSING MODE
  2420  	op_TAR     uint32 = 0xB24C // FORMAT_RRE        TEST ACCESS
  2421  	op_TB      uint32 = 0xB22C // FORMAT_RRE        TEST BLOCK
  2422  	op_TBDR    uint32 = 0xB351 // FORMAT_RRF5       CONVERT HFP TO BFP (long)
  2423  	op_TBEDR   uint32 = 0xB350 // FORMAT_RRF5       CONVERT HFP TO BFP (long to short)
  2424  	op_TBEGIN  uint32 = 0xE560 // FORMAT_SIL        TRANSACTION BEGIN
  2425  	op_TBEGINC uint32 = 0xE561 // FORMAT_SIL        TRANSACTION BEGIN
  2426  	op_TCDB    uint32 = 0xED11 // FORMAT_RXE        TEST DATA CLASS (long BFP)
  2427  	op_TCEB    uint32 = 0xED10 // FORMAT_RXE        TEST DATA CLASS (short BFP)
  2428  	op_TCXB    uint32 = 0xED12 // FORMAT_RXE        TEST DATA CLASS (extended BFP)
  2429  	op_TDCDT   uint32 = 0xED54 // FORMAT_RXE        TEST DATA CLASS (long DFP)
  2430  	op_TDCET   uint32 = 0xED50 // FORMAT_RXE        TEST DATA CLASS (short DFP)
  2431  	op_TDCXT   uint32 = 0xED58 // FORMAT_RXE        TEST DATA CLASS (extended DFP)
  2432  	op_TDGDT   uint32 = 0xED55 // FORMAT_RXE        TEST DATA GROUP (long DFP)
  2433  	op_TDGET   uint32 = 0xED51 // FORMAT_RXE        TEST DATA GROUP (short DFP)
  2434  	op_TDGXT   uint32 = 0xED59 // FORMAT_RXE        TEST DATA GROUP (extended DFP)
  2435  	op_TEND    uint32 = 0xB2F8 // FORMAT_S          TRANSACTION END
  2436  	op_THDER   uint32 = 0xB358 // FORMAT_RRE        CONVERT BFP TO HFP (short to long)
  2437  	op_THDR    uint32 = 0xB359 // FORMAT_RRE        CONVERT BFP TO HFP (long)
  2438  	op_TM      uint32 = 0x9100 // FORMAT_SI         TEST UNDER MASK
  2439  	op_TMH     uint32 = 0xA700 // FORMAT_RI1        TEST UNDER MASK HIGH
  2440  	op_TMHH    uint32 = 0xA702 // FORMAT_RI1        TEST UNDER MASK (high high)
  2441  	op_TMHL    uint32 = 0xA703 // FORMAT_RI1        TEST UNDER MASK (high low)
  2442  	op_TML     uint32 = 0xA701 // FORMAT_RI1        TEST UNDER MASK LOW
  2443  	op_TMLH    uint32 = 0xA700 // FORMAT_RI1        TEST UNDER MASK (low high)
  2444  	op_TMLL    uint32 = 0xA701 // FORMAT_RI1        TEST UNDER MASK (low low)
  2445  	op_TMY     uint32 = 0xEB51 // FORMAT_SIY        TEST UNDER MASK
  2446  	op_TP      uint32 = 0xEBC0 // FORMAT_RSL        TEST DECIMAL
  2447  	op_TPI     uint32 = 0xB236 // FORMAT_S          TEST PENDING INTERRUPTION
  2448  	op_TPROT   uint32 = 0xE501 // FORMAT_SSE        TEST PROTECTION
  2449  	op_TR      uint32 = 0xDC00 // FORMAT_SS1        TRANSLATE
  2450  	op_TRACE   uint32 = 0x9900 // FORMAT_RS1        TRACE (32)
  2451  	op_TRACG   uint32 = 0xEB0F // FORMAT_RSY1       TRACE (64)
  2452  	op_TRAP2   uint32 = 0x01FF // FORMAT_E          TRAP
  2453  	op_TRAP4   uint32 = 0xB2FF // FORMAT_S          TRAP
  2454  	op_TRE     uint32 = 0xB2A5 // FORMAT_RRE        TRANSLATE EXTENDED
  2455  	op_TROO    uint32 = 0xB993 // FORMAT_RRF3       TRANSLATE ONE TO ONE
  2456  	op_TROT    uint32 = 0xB992 // FORMAT_RRF3       TRANSLATE ONE TO TWO
  2457  	op_TRT     uint32 = 0xDD00 // FORMAT_SS1        TRANSLATE AND TEST
  2458  	op_TRTE    uint32 = 0xB9BF // FORMAT_RRF3       TRANSLATE AND TEST EXTENDED
  2459  	op_TRTO    uint32 = 0xB991 // FORMAT_RRF3       TRANSLATE TWO TO ONE
  2460  	op_TRTR    uint32 = 0xD000 // FORMAT_SS1        TRANSLATE AND TEST REVERSE
  2461  	op_TRTRE   uint32 = 0xB9BD // FORMAT_RRF3       TRANSLATE AND TEST REVERSE EXTENDED
  2462  	op_TRTT    uint32 = 0xB990 // FORMAT_RRF3       TRANSLATE TWO TO TWO
  2463  	op_TS      uint32 = 0x9300 // FORMAT_S          TEST AND SET
  2464  	op_TSCH    uint32 = 0xB235 // FORMAT_S          TEST SUBCHANNEL
  2465  	op_UNPK    uint32 = 0xF300 // FORMAT_SS2        UNPACK
  2466  	op_UNPKA   uint32 = 0xEA00 // FORMAT_SS1        UNPACK ASCII
  2467  	op_UNPKU   uint32 = 0xE200 // FORMAT_SS1        UNPACK UNICODE
  2468  	op_UPT     uint32 = 0x0102 // FORMAT_E          UPDATE TREE
  2469  	op_X       uint32 = 0x5700 // FORMAT_RX1        EXCLUSIVE OR (32)
  2470  	op_XC      uint32 = 0xD700 // FORMAT_SS1        EXCLUSIVE OR (character)
  2471  	op_XG      uint32 = 0xE382 // FORMAT_RXY1       EXCLUSIVE OR (64)
  2472  	op_XGR     uint32 = 0xB982 // FORMAT_RRE        EXCLUSIVE OR (64)
  2473  	op_XGRK    uint32 = 0xB9E7 // FORMAT_RRF1       EXCLUSIVE OR (64)
  2474  	op_XI      uint32 = 0x9700 // FORMAT_SI         EXCLUSIVE OR (immediate)
  2475  	op_XIHF    uint32 = 0xC006 // FORMAT_RIL1       EXCLUSIVE OR IMMEDIATE (high)
  2476  	op_XILF    uint32 = 0xC007 // FORMAT_RIL1       EXCLUSIVE OR IMMEDIATE (low)
  2477  	op_XIY     uint32 = 0xEB57 // FORMAT_SIY        EXCLUSIVE OR (immediate)
  2478  	op_XR      uint32 = 0x1700 // FORMAT_RR         EXCLUSIVE OR (32)
  2479  	op_XRK     uint32 = 0xB9F7 // FORMAT_RRF1       EXCLUSIVE OR (32)
  2480  	op_XSCH    uint32 = 0xB276 // FORMAT_S          CANCEL SUBCHANNEL
  2481  	op_XY      uint32 = 0xE357 // FORMAT_RXY1       EXCLUSIVE OR (32)
  2482  	op_ZAP     uint32 = 0xF800 // FORMAT_SS2        ZERO AND ADD
  2483  	op_BRRK    uint32 = 0x0001 // FORMAT_E          BREAKPOINT
  2484  
  2485  	// added in z13
  2486  	op_CXPT   uint32 = 0xEDAF // 	RSL-b	CONVERT FROM PACKED (to extended DFP)
  2487  	op_CDPT   uint32 = 0xEDAE // 	RSL-b	CONVERT FROM PACKED (to long DFP)
  2488  	op_CPXT   uint32 = 0xEDAD // 	RSL-b	CONVERT TO PACKED (from extended DFP)
  2489  	op_CPDT   uint32 = 0xEDAC // 	RSL-b	CONVERT TO PACKED (from long DFP)
  2490  	op_LZRF   uint32 = 0xE33B // 	RXY-a	LOAD AND ZERO RIGHTMOST BYTE (32)
  2491  	op_LZRG   uint32 = 0xE32A // 	RXY-a	LOAD AND ZERO RIGHTMOST BYTE (64)
  2492  	op_LCCB   uint32 = 0xE727 // 	RXE	LOAD COUNT TO BLOCK BOUNDARY
  2493  	op_LOCHHI uint32 = 0xEC4E // 	RIE-g	LOAD HALFWORD HIGH IMMEDIATE ON CONDITION (32←16)
  2494  	op_LOCHI  uint32 = 0xEC42 // 	RIE-g	LOAD HALFWORD IMMEDIATE ON CONDITION (32←16)
  2495  	op_LOCGHI uint32 = 0xEC46 // 	RIE-g	LOAD HALFWORD IMMEDIATE ON CONDITION (64←16)
  2496  	op_LOCFH  uint32 = 0xEBE0 // 	RSY-b	LOAD HIGH ON CONDITION (32)
  2497  	op_LOCFHR uint32 = 0xB9E0 // 	RRF-c	LOAD HIGH ON CONDITION (32)
  2498  	op_LLZRGF uint32 = 0xE33A // 	RXY-a	LOAD LOGICAL AND ZERO RIGHTMOST BYTE (64←32)
  2499  	op_STOCFH uint32 = 0xEBE1 // 	RSY-b	STORE HIGH ON CONDITION
  2500  	op_VA     uint32 = 0xE7F3 // 	VRR-c	VECTOR ADD
  2501  	op_VACC   uint32 = 0xE7F1 // 	VRR-c	VECTOR ADD COMPUTE CARRY
  2502  	op_VAC    uint32 = 0xE7BB // 	VRR-d	VECTOR ADD WITH CARRY
  2503  	op_VACCC  uint32 = 0xE7B9 // 	VRR-d	VECTOR ADD WITH CARRY COMPUTE CARRY
  2504  	op_VN     uint32 = 0xE768 // 	VRR-c	VECTOR AND
  2505  	op_VNC    uint32 = 0xE769 // 	VRR-c	VECTOR AND WITH COMPLEMENT
  2506  	op_VAVG   uint32 = 0xE7F2 // 	VRR-c	VECTOR AVERAGE
  2507  	op_VAVGL  uint32 = 0xE7F0 // 	VRR-c	VECTOR AVERAGE LOGICAL
  2508  	op_VCKSM  uint32 = 0xE766 // 	VRR-c	VECTOR CHECKSUM
  2509  	op_VCEQ   uint32 = 0xE7F8 // 	VRR-b	VECTOR COMPARE EQUAL
  2510  	op_VCH    uint32 = 0xE7FB // 	VRR-b	VECTOR COMPARE HIGH
  2511  	op_VCHL   uint32 = 0xE7F9 // 	VRR-b	VECTOR COMPARE HIGH LOGICAL
  2512  	op_VCLZ   uint32 = 0xE753 // 	VRR-a	VECTOR COUNT LEADING ZEROS
  2513  	op_VCTZ   uint32 = 0xE752 // 	VRR-a	VECTOR COUNT TRAILING ZEROS
  2514  	op_VEC    uint32 = 0xE7DB // 	VRR-a	VECTOR ELEMENT COMPARE
  2515  	op_VECL   uint32 = 0xE7D9 // 	VRR-a	VECTOR ELEMENT COMPARE LOGICAL
  2516  	op_VERIM  uint32 = 0xE772 // 	VRI-d	VECTOR ELEMENT ROTATE AND INSERT UNDER MASK
  2517  	op_VERLL  uint32 = 0xE733 // 	VRS-a	VECTOR ELEMENT ROTATE LEFT LOGICAL
  2518  	op_VERLLV uint32 = 0xE773 // 	VRR-c	VECTOR ELEMENT ROTATE LEFT LOGICAL
  2519  	op_VESLV  uint32 = 0xE770 // 	VRR-c	VECTOR ELEMENT SHIFT LEFT
  2520  	op_VESL   uint32 = 0xE730 // 	VRS-a	VECTOR ELEMENT SHIFT LEFT
  2521  	op_VESRA  uint32 = 0xE73A // 	VRS-a	VECTOR ELEMENT SHIFT RIGHT ARITHMETIC
  2522  	op_VESRAV uint32 = 0xE77A // 	VRR-c	VECTOR ELEMENT SHIFT RIGHT ARITHMETIC
  2523  	op_VESRL  uint32 = 0xE738 // 	VRS-a	VECTOR ELEMENT SHIFT RIGHT LOGICAL
  2524  	op_VESRLV uint32 = 0xE778 // 	VRR-c	VECTOR ELEMENT SHIFT RIGHT LOGICAL
  2525  	op_VX     uint32 = 0xE76D // 	VRR-c	VECTOR EXCLUSIVE OR
  2526  	op_VFAE   uint32 = 0xE782 // 	VRR-b	VECTOR FIND ANY ELEMENT EQUAL
  2527  	op_VFEE   uint32 = 0xE780 // 	VRR-b	VECTOR FIND ELEMENT EQUAL
  2528  	op_VFENE  uint32 = 0xE781 // 	VRR-b	VECTOR FIND ELEMENT NOT EQUAL
  2529  	op_VFA    uint32 = 0xE7E3 // 	VRR-c	VECTOR FP ADD
  2530  	op_WFK    uint32 = 0xE7CA // 	VRR-a	VECTOR FP COMPARE AND SIGNAL SCALAR
  2531  	op_VFCE   uint32 = 0xE7E8 // 	VRR-c	VECTOR FP COMPARE EQUAL
  2532  	op_VFCH   uint32 = 0xE7EB // 	VRR-c	VECTOR FP COMPARE HIGH
  2533  	op_VFCHE  uint32 = 0xE7EA // 	VRR-c	VECTOR FP COMPARE HIGH OR EQUAL
  2534  	op_WFC    uint32 = 0xE7CB // 	VRR-a	VECTOR FP COMPARE SCALAR
  2535  	op_VCDG   uint32 = 0xE7C3 // 	VRR-a	VECTOR FP CONVERT FROM FIXED 64-BIT
  2536  	op_VCDLG  uint32 = 0xE7C1 // 	VRR-a	VECTOR FP CONVERT FROM LOGICAL 64-BIT
  2537  	op_VCGD   uint32 = 0xE7C2 // 	VRR-a	VECTOR FP CONVERT TO FIXED 64-BIT
  2538  	op_VCLGD  uint32 = 0xE7C0 // 	VRR-a	VECTOR FP CONVERT TO LOGICAL 64-BIT
  2539  	op_VFD    uint32 = 0xE7E5 // 	VRR-c	VECTOR FP DIVIDE
  2540  	op_VLDE   uint32 = 0xE7C4 // 	VRR-a	VECTOR FP LOAD LENGTHENED
  2541  	op_VLED   uint32 = 0xE7C5 // 	VRR-a	VECTOR FP LOAD ROUNDED
  2542  	op_VFM    uint32 = 0xE7E7 // 	VRR-c	VECTOR FP MULTIPLY
  2543  	op_VFMA   uint32 = 0xE78F // 	VRR-e	VECTOR FP MULTIPLY AND ADD
  2544  	op_VFMS   uint32 = 0xE78E // 	VRR-e	VECTOR FP MULTIPLY AND SUBTRACT
  2545  	op_VFPSO  uint32 = 0xE7CC // 	VRR-a	VECTOR FP PERFORM SIGN OPERATION
  2546  	op_VFSQ   uint32 = 0xE7CE // 	VRR-a	VECTOR FP SQUARE ROOT
  2547  	op_VFS    uint32 = 0xE7E2 // 	VRR-c	VECTOR FP SUBTRACT
  2548  	op_VFTCI  uint32 = 0xE74A // 	VRI-e	VECTOR FP TEST DATA CLASS IMMEDIATE
  2549  	op_VGFM   uint32 = 0xE7B4 // 	VRR-c	VECTOR GALOIS FIELD MULTIPLY SUM
  2550  	op_VGFMA  uint32 = 0xE7BC // 	VRR-d	VECTOR GALOIS FIELD MULTIPLY SUM AND ACCUMULATE
  2551  	op_VGEF   uint32 = 0xE713 // 	VRV	VECTOR GATHER ELEMENT (32)
  2552  	op_VGEG   uint32 = 0xE712 // 	VRV	VECTOR GATHER ELEMENT (64)
  2553  	op_VGBM   uint32 = 0xE744 // 	VRI-a	VECTOR GENERATE BYTE MASK
  2554  	op_VGM    uint32 = 0xE746 // 	VRI-b	VECTOR GENERATE MASK
  2555  	op_VISTR  uint32 = 0xE75C // 	VRR-a	VECTOR ISOLATE STRING
  2556  	op_VL     uint32 = 0xE706 // 	VRX	VECTOR LOAD
  2557  	op_VLR    uint32 = 0xE756 // 	VRR-a	VECTOR LOAD
  2558  	op_VLREP  uint32 = 0xE705 // 	VRX	VECTOR LOAD AND REPLICATE
  2559  	op_VLC    uint32 = 0xE7DE // 	VRR-a	VECTOR LOAD COMPLEMENT
  2560  	op_VLEH   uint32 = 0xE701 // 	VRX	VECTOR LOAD ELEMENT (16)
  2561  	op_VLEF   uint32 = 0xE703 // 	VRX	VECTOR LOAD ELEMENT (32)
  2562  	op_VLEG   uint32 = 0xE702 // 	VRX	VECTOR LOAD ELEMENT (64)
  2563  	op_VLEB   uint32 = 0xE700 // 	VRX	VECTOR LOAD ELEMENT (8)
  2564  	op_VLEIH  uint32 = 0xE741 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (16)
  2565  	op_VLEIF  uint32 = 0xE743 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (32)
  2566  	op_VLEIG  uint32 = 0xE742 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (64)
  2567  	op_VLEIB  uint32 = 0xE740 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (8)
  2568  	op_VFI    uint32 = 0xE7C7 // 	VRR-a	VECTOR LOAD FP INTEGER
  2569  	op_VLGV   uint32 = 0xE721 // 	VRS-c	VECTOR LOAD GR FROM VR ELEMENT
  2570  	op_VLLEZ  uint32 = 0xE704 // 	VRX	VECTOR LOAD LOGICAL ELEMENT AND ZERO
  2571  	op_VLM    uint32 = 0xE736 // 	VRS-a	VECTOR LOAD MULTIPLE
  2572  	op_VLP    uint32 = 0xE7DF // 	VRR-a	VECTOR LOAD POSITIVE
  2573  	op_VLBB   uint32 = 0xE707 // 	VRX	VECTOR LOAD TO BLOCK BOUNDARY
  2574  	op_VLVG   uint32 = 0xE722 // 	VRS-b	VECTOR LOAD VR ELEMENT FROM GR
  2575  	op_VLVGP  uint32 = 0xE762 // 	VRR-f	VECTOR LOAD VR FROM GRS DISJOINT
  2576  	op_VLL    uint32 = 0xE737 // 	VRS-b	VECTOR LOAD WITH LENGTH
  2577  	op_VMX    uint32 = 0xE7FF // 	VRR-c	VECTOR MAXIMUM
  2578  	op_VMXL   uint32 = 0xE7FD // 	VRR-c	VECTOR MAXIMUM LOGICAL
  2579  	op_VMRH   uint32 = 0xE761 // 	VRR-c	VECTOR MERGE HIGH
  2580  	op_VMRL   uint32 = 0xE760 // 	VRR-c	VECTOR MERGE LOW
  2581  	op_VMN    uint32 = 0xE7FE // 	VRR-c	VECTOR MINIMUM
  2582  	op_VMNL   uint32 = 0xE7FC // 	VRR-c	VECTOR MINIMUM LOGICAL
  2583  	op_VMAE   uint32 = 0xE7AE // 	VRR-d	VECTOR MULTIPLY AND ADD EVEN
  2584  	op_VMAH   uint32 = 0xE7AB // 	VRR-d	VECTOR MULTIPLY AND ADD HIGH
  2585  	op_VMALE  uint32 = 0xE7AC // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL EVEN
  2586  	op_VMALH  uint32 = 0xE7A9 // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL HIGH
  2587  	op_VMALO  uint32 = 0xE7AD // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL ODD
  2588  	op_VMAL   uint32 = 0xE7AA // 	VRR-d	VECTOR MULTIPLY AND ADD LOW
  2589  	op_VMAO   uint32 = 0xE7AF // 	VRR-d	VECTOR MULTIPLY AND ADD ODD
  2590  	op_VME    uint32 = 0xE7A6 // 	VRR-c	VECTOR MULTIPLY EVEN
  2591  	op_VMH    uint32 = 0xE7A3 // 	VRR-c	VECTOR MULTIPLY HIGH
  2592  	op_VMLE   uint32 = 0xE7A4 // 	VRR-c	VECTOR MULTIPLY EVEN LOGICAL
  2593  	op_VMLH   uint32 = 0xE7A1 // 	VRR-c	VECTOR MULTIPLY HIGH LOGICAL
  2594  	op_VMLO   uint32 = 0xE7A5 // 	VRR-c	VECTOR MULTIPLY ODD LOGICAL
  2595  	op_VML    uint32 = 0xE7A2 // 	VRR-c	VECTOR MULTIPLY LOW
  2596  	op_VMO    uint32 = 0xE7A7 // 	VRR-c	VECTOR MULTIPLY ODD
  2597  	op_VNO    uint32 = 0xE76B // 	VRR-c	VECTOR NOR
  2598  	op_VO     uint32 = 0xE76A // 	VRR-c	VECTOR OR
  2599  	op_VPK    uint32 = 0xE794 // 	VRR-c	VECTOR PACK
  2600  	op_VPKLS  uint32 = 0xE795 // 	VRR-b	VECTOR PACK LOGICAL SATURATE
  2601  	op_VPKS   uint32 = 0xE797 // 	VRR-b	VECTOR PACK SATURATE
  2602  	op_VPERM  uint32 = 0xE78C // 	VRR-e	VECTOR PERMUTE
  2603  	op_VPDI   uint32 = 0xE784 // 	VRR-c	VECTOR PERMUTE DOUBLEWORD IMMEDIATE
  2604  	op_VPOPCT uint32 = 0xE750 // 	VRR-a	VECTOR POPULATION COUNT
  2605  	op_VREP   uint32 = 0xE74D // 	VRI-c	VECTOR REPLICATE
  2606  	op_VREPI  uint32 = 0xE745 // 	VRI-a	VECTOR REPLICATE IMMEDIATE
  2607  	op_VSCEF  uint32 = 0xE71B // 	VRV	VECTOR SCATTER ELEMENT (32)
  2608  	op_VSCEG  uint32 = 0xE71A // 	VRV	VECTOR SCATTER ELEMENT (64)
  2609  	op_VSEL   uint32 = 0xE78D // 	VRR-e	VECTOR SELECT
  2610  	op_VSL    uint32 = 0xE774 // 	VRR-c	VECTOR SHIFT LEFT
  2611  	op_VSLB   uint32 = 0xE775 // 	VRR-c	VECTOR SHIFT LEFT BY BYTE
  2612  	op_VSLDB  uint32 = 0xE777 // 	VRI-d	VECTOR SHIFT LEFT DOUBLE BY BYTE
  2613  	op_VSRA   uint32 = 0xE77E // 	VRR-c	VECTOR SHIFT RIGHT ARITHMETIC
  2614  	op_VSRAB  uint32 = 0xE77F // 	VRR-c	VECTOR SHIFT RIGHT ARITHMETIC BY BYTE
  2615  	op_VSRL   uint32 = 0xE77C // 	VRR-c	VECTOR SHIFT RIGHT LOGICAL
  2616  	op_VSRLB  uint32 = 0xE77D // 	VRR-c	VECTOR SHIFT RIGHT LOGICAL BY BYTE
  2617  	op_VSEG   uint32 = 0xE75F // 	VRR-a	VECTOR SIGN EXTEND TO DOUBLEWORD
  2618  	op_VST    uint32 = 0xE70E // 	VRX	VECTOR STORE
  2619  	op_VSTEH  uint32 = 0xE709 // 	VRX	VECTOR STORE ELEMENT (16)
  2620  	op_VSTEF  uint32 = 0xE70B // 	VRX	VECTOR STORE ELEMENT (32)
  2621  	op_VSTEG  uint32 = 0xE70A // 	VRX	VECTOR STORE ELEMENT (64)
  2622  	op_VSTEB  uint32 = 0xE708 // 	VRX	VECTOR STORE ELEMENT (8)
  2623  	op_VSTM   uint32 = 0xE73E // 	VRS-a	VECTOR STORE MULTIPLE
  2624  	op_VSTL   uint32 = 0xE73F // 	VRS-b	VECTOR STORE WITH LENGTH
  2625  	op_VSTRC  uint32 = 0xE78A // 	VRR-d	VECTOR STRING RANGE COMPARE
  2626  	op_VS     uint32 = 0xE7F7 // 	VRR-c	VECTOR SUBTRACT
  2627  	op_VSCBI  uint32 = 0xE7F5 // 	VRR-c	VECTOR SUBTRACT COMPUTE BORROW INDICATION
  2628  	op_VSBCBI uint32 = 0xE7BD // 	VRR-d	VECTOR SUBTRACT WITH BORROW COMPUTE BORROW INDICATION
  2629  	op_VSBI   uint32 = 0xE7BF // 	VRR-d	VECTOR SUBTRACT WITH BORROW INDICATION
  2630  	op_VSUMG  uint32 = 0xE765 // 	VRR-c	VECTOR SUM ACROSS DOUBLEWORD
  2631  	op_VSUMQ  uint32 = 0xE767 // 	VRR-c	VECTOR SUM ACROSS QUADWORD
  2632  	op_VSUM   uint32 = 0xE764 // 	VRR-c	VECTOR SUM ACROSS WORD
  2633  	op_VTM    uint32 = 0xE7D8 // 	VRR-a	VECTOR TEST UNDER MASK
  2634  	op_VUPH   uint32 = 0xE7D7 // 	VRR-a	VECTOR UNPACK HIGH
  2635  	op_VUPLH  uint32 = 0xE7D5 // 	VRR-a	VECTOR UNPACK LOGICAL HIGH
  2636  	op_VUPLL  uint32 = 0xE7D4 // 	VRR-a	VECTOR UNPACK LOGICAL LOW
  2637  	op_VUPL   uint32 = 0xE7D6 // 	VRR-a	VECTOR UNPACK LOW
  2638  	op_VMSL   uint32 = 0xE7B8 // 	VRR-d	VECTOR MULTIPLY SUM LOGICAL
  2639  
  2640  	// added in z15
  2641  	op_KDSA uint32 = 0xB93A // FORMAT_RRE        COMPUTE DIGITAL SIGNATURE AUTHENTICATION (KDSA)
  2642  
  2643  )
  2644  
  2645  func oclass(a *obj.Addr) int {
  2646  	return int(a.Class) - 1
  2647  }
  2648  
  2649  // Add a relocation for the immediate in a RIL style instruction.
  2650  // The addend will be adjusted as required.
  2651  func (c *ctxtz) addrilreloc(sym *obj.LSym, add int64) {
  2652  	if sym == nil {
  2653  		c.ctxt.Diag("require symbol to apply relocation")
  2654  	}
  2655  	offset := int64(2) // relocation offset from start of instruction
  2656  	c.cursym.AddRel(c.ctxt, obj.Reloc{
  2657  		Type: objabi.R_PCRELDBL,
  2658  		Off:  int32(c.pc + offset),
  2659  		Siz:  4,
  2660  		Sym:  sym,
  2661  		Add:  add + offset + 4,
  2662  	})
  2663  }
  2664  
  2665  func (c *ctxtz) addrilrelocoffset(sym *obj.LSym, add, offset int64) {
  2666  	if sym == nil {
  2667  		c.ctxt.Diag("require symbol to apply relocation")
  2668  	}
  2669  	offset += int64(2) // relocation offset from start of instruction
  2670  	c.cursym.AddRel(c.ctxt, obj.Reloc{
  2671  		Type: objabi.R_PCRELDBL,
  2672  		Off:  int32(c.pc + offset),
  2673  		Siz:  4,
  2674  		Sym:  sym,
  2675  		Add:  add + offset + 4,
  2676  	})
  2677  }
  2678  
  2679  // Add a CALL relocation for the immediate in a RIL style instruction.
  2680  // The addend will be adjusted as required.
  2681  func (c *ctxtz) addcallreloc(sym *obj.LSym, add int64) {
  2682  	if sym == nil {
  2683  		c.ctxt.Diag("require symbol to apply relocation")
  2684  	}
  2685  	offset := int64(2) // relocation offset from start of instruction
  2686  	c.cursym.AddRel(c.ctxt, obj.Reloc{
  2687  		Type: objabi.R_CALL,
  2688  		Off:  int32(c.pc + offset),
  2689  		Siz:  4,
  2690  		Sym:  sym,
  2691  		Add:  add + offset + int64(4),
  2692  	})
  2693  }
  2694  
  2695  func (c *ctxtz) branchMask(p *obj.Prog) CCMask {
  2696  	switch p.As {
  2697  	case ABRC, ALOCR, ALOCGR,
  2698  		ACRJ, ACGRJ, ACIJ, ACGIJ,
  2699  		ACLRJ, ACLGRJ, ACLIJ, ACLGIJ:
  2700  		return CCMask(p.From.Offset)
  2701  	case ABEQ, ACMPBEQ, ACMPUBEQ, AMOVDEQ:
  2702  		return Equal
  2703  	case ABGE, ACMPBGE, ACMPUBGE, AMOVDGE:
  2704  		return GreaterOrEqual
  2705  	case ABGT, ACMPBGT, ACMPUBGT, AMOVDGT:
  2706  		return Greater
  2707  	case ABLE, ACMPBLE, ACMPUBLE, AMOVDLE:
  2708  		return LessOrEqual
  2709  	case ABLT, ACMPBLT, ACMPUBLT, AMOVDLT:
  2710  		return Less
  2711  	case ABNE, ACMPBNE, ACMPUBNE, AMOVDNE:
  2712  		return NotEqual
  2713  	case ABLEU: // LE or unordered
  2714  		return NotGreater
  2715  	case ABLTU: // LT or unordered
  2716  		return LessOrUnordered
  2717  	case ABVC:
  2718  		return Never // needs extra instruction
  2719  	case ABVS:
  2720  		return Unordered
  2721  	}
  2722  	c.ctxt.Diag("unknown conditional branch %v", p.As)
  2723  	return Always
  2724  }
  2725  
  2726  func regtmp(p *obj.Prog) uint32 {
  2727  	p.Mark |= USETMP
  2728  	return REGTMP
  2729  }
  2730  
  2731  func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
  2732  	o := c.oplook(p)
  2733  
  2734  	if o == nil {
  2735  		return
  2736  	}
  2737  
  2738  	// If REGTMP is used in generated code, we need to set USETMP on p.Mark.
  2739  	// So we use regtmp(p) for REGTMP.
  2740  
  2741  	switch o.i {
  2742  	default:
  2743  		c.ctxt.Diag("unknown index %d", o.i)
  2744  
  2745  	case 0: // PSEUDO OPS
  2746  		break
  2747  
  2748  	case 1: // mov reg reg
  2749  		switch p.As {
  2750  		default:
  2751  			c.ctxt.Diag("unhandled operation: %v", p.As)
  2752  		case AMOVD:
  2753  			zRRE(op_LGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2754  		// sign extend
  2755  		case AMOVW:
  2756  			zRRE(op_LGFR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2757  		case AMOVH:
  2758  			zRRE(op_LGHR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2759  		case AMOVB:
  2760  			zRRE(op_LGBR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2761  		// zero extend
  2762  		case AMOVWZ:
  2763  			zRRE(op_LLGFR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2764  		case AMOVHZ:
  2765  			zRRE(op_LLGHR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2766  		case AMOVBZ:
  2767  			zRRE(op_LLGCR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2768  		// reverse bytes
  2769  		case AMOVDBR:
  2770  			zRRE(op_LRVGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2771  		case AMOVWBR:
  2772  			zRRE(op_LRVR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2773  		// floating point
  2774  		case AFMOVD, AFMOVS:
  2775  			zRR(op_LDR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2776  		}
  2777  
  2778  	case 2: // arithmetic op reg [reg] reg
  2779  		r := p.Reg
  2780  		if r == 0 {
  2781  			r = p.To.Reg
  2782  		}
  2783  
  2784  		var opcode uint32
  2785  
  2786  		switch p.As {
  2787  		default:
  2788  			c.ctxt.Diag("invalid opcode")
  2789  		case AADD:
  2790  			opcode = op_AGRK
  2791  		case AADDC:
  2792  			opcode = op_ALGRK
  2793  		case AADDE:
  2794  			opcode = op_ALCGR
  2795  		case AADDW:
  2796  			opcode = op_ARK
  2797  		case AMULLW:
  2798  			opcode = op_MSGFR
  2799  		case AMULLD:
  2800  			opcode = op_MSGR
  2801  		case ADIVW, AMODW:
  2802  			opcode = op_DSGFR
  2803  		case ADIVWU, AMODWU:
  2804  			opcode = op_DLR
  2805  		case ADIVD, AMODD:
  2806  			opcode = op_DSGR
  2807  		case ADIVDU, AMODDU:
  2808  			opcode = op_DLGR
  2809  		}
  2810  
  2811  		switch p.As {
  2812  		default:
  2813  
  2814  		case AADD, AADDC, AADDW:
  2815  			if p.As == AADDW && r == p.To.Reg {
  2816  				zRR(op_AR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2817  			} else {
  2818  				zRRF(opcode, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2819  			}
  2820  
  2821  		case AADDE, AMULLW, AMULLD:
  2822  			if r == p.To.Reg {
  2823  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2824  			} else if p.From.Reg == p.To.Reg {
  2825  				zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)
  2826  			} else {
  2827  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2828  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2829  			}
  2830  
  2831  		case ADIVW, ADIVWU, ADIVD, ADIVDU:
  2832  			if p.As == ADIVWU || p.As == ADIVDU {
  2833  				zRI(op_LGHI, regtmp(p), 0, asm)
  2834  			}
  2835  			zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2836  			zRRE(opcode, regtmp(p), uint32(p.From.Reg), asm)
  2837  			zRRE(op_LGR, uint32(p.To.Reg), REGTMP2, asm)
  2838  
  2839  		case AMODW, AMODWU, AMODD, AMODDU:
  2840  			if p.As == AMODWU || p.As == AMODDU {
  2841  				zRI(op_LGHI, regtmp(p), 0, asm)
  2842  			}
  2843  			zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2844  			zRRE(opcode, regtmp(p), uint32(p.From.Reg), asm)
  2845  			zRRE(op_LGR, uint32(p.To.Reg), regtmp(p), asm)
  2846  
  2847  		}
  2848  
  2849  	case 3: // mov $constant reg
  2850  		v := c.vregoff(&p.From)
  2851  		switch p.As {
  2852  		case AMOVBZ:
  2853  			v = int64(uint8(v))
  2854  		case AMOVHZ:
  2855  			v = int64(uint16(v))
  2856  		case AMOVWZ:
  2857  			v = int64(uint32(v))
  2858  		case AMOVB:
  2859  			v = int64(int8(v))
  2860  		case AMOVH:
  2861  			v = int64(int16(v))
  2862  		case AMOVW:
  2863  			v = int64(int32(v))
  2864  		}
  2865  		if int64(int16(v)) == v {
  2866  			zRI(op_LGHI, uint32(p.To.Reg), uint32(v), asm)
  2867  		} else if v&0xffff0000 == v {
  2868  			zRI(op_LLILH, uint32(p.To.Reg), uint32(v>>16), asm)
  2869  		} else if v&0xffff00000000 == v {
  2870  			zRI(op_LLIHL, uint32(p.To.Reg), uint32(v>>32), asm)
  2871  		} else if uint64(v)&0xffff000000000000 == uint64(v) {
  2872  			zRI(op_LLIHH, uint32(p.To.Reg), uint32(v>>48), asm)
  2873  		} else if int64(int32(v)) == v {
  2874  			zRIL(_a, op_LGFI, uint32(p.To.Reg), uint32(v), asm)
  2875  		} else if int64(uint32(v)) == v {
  2876  			zRIL(_a, op_LLILF, uint32(p.To.Reg), uint32(v), asm)
  2877  		} else if uint64(v)&0xffffffff00000000 == uint64(v) {
  2878  			zRIL(_a, op_LLIHF, uint32(p.To.Reg), uint32(v>>32), asm)
  2879  		} else {
  2880  			zRIL(_a, op_LLILF, uint32(p.To.Reg), uint32(v), asm)
  2881  			zRIL(_a, op_IIHF, uint32(p.To.Reg), uint32(v>>32), asm)
  2882  		}
  2883  
  2884  	case 4: // multiply high (a*b)>>64
  2885  		r := p.Reg
  2886  		if r == 0 {
  2887  			r = p.To.Reg
  2888  		}
  2889  		zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2890  		zRRE(op_MLGR, regtmp(p), uint32(p.From.Reg), asm)
  2891  		switch p.As {
  2892  		case AMULHDU:
  2893  			// Unsigned: move result into correct register.
  2894  			zRRE(op_LGR, uint32(p.To.Reg), regtmp(p), asm)
  2895  		case AMULHD:
  2896  			// Signed: need to convert result.
  2897  			// See Hacker's Delight 8-3.
  2898  			zRSY(op_SRAG, REGTMP2, uint32(p.From.Reg), 0, 63, asm)
  2899  			zRRE(op_NGR, REGTMP2, uint32(r), asm)
  2900  			zRRE(op_SGR, regtmp(p), REGTMP2, asm)
  2901  			zRSY(op_SRAG, REGTMP2, uint32(r), 0, 63, asm)
  2902  			zRRE(op_NGR, REGTMP2, uint32(p.From.Reg), asm)
  2903  			zRRF(op_SGRK, REGTMP2, 0, uint32(p.To.Reg), regtmp(p), asm)
  2904  		}
  2905  
  2906  	case 5: // syscall
  2907  		zI(op_SVC, 0, asm)
  2908  
  2909  	case 6: // logical op reg [reg] reg
  2910  		var oprr, oprre, oprrf uint32
  2911  		switch p.As {
  2912  		case AAND:
  2913  			oprre = op_NGR
  2914  			oprrf = op_NGRK
  2915  		case AANDW:
  2916  			oprr = op_NR
  2917  			oprrf = op_NRK
  2918  		case AOR:
  2919  			oprre = op_OGR
  2920  			oprrf = op_OGRK
  2921  		case AORW:
  2922  			oprr = op_OR
  2923  			oprrf = op_ORK
  2924  		case AXOR:
  2925  			oprre = op_XGR
  2926  			oprrf = op_XGRK
  2927  		case AXORW:
  2928  			oprr = op_XR
  2929  			oprrf = op_XRK
  2930  		}
  2931  		if p.Reg == 0 {
  2932  			if oprr != 0 {
  2933  				zRR(oprr, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2934  			} else {
  2935  				zRRE(oprre, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2936  			}
  2937  		} else {
  2938  			zRRF(oprrf, uint32(p.Reg), 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2939  		}
  2940  
  2941  	case 7: // shift/rotate reg [reg] reg
  2942  		d2 := c.vregoff(&p.From)
  2943  		b2 := p.From.Reg
  2944  		r3 := p.Reg
  2945  		if r3 == 0 {
  2946  			r3 = p.To.Reg
  2947  		}
  2948  		r1 := p.To.Reg
  2949  		var opcode uint32
  2950  		switch p.As {
  2951  		default:
  2952  		case ASLD:
  2953  			opcode = op_SLLG
  2954  		case ASRD:
  2955  			opcode = op_SRLG
  2956  		case ASLW:
  2957  			opcode = op_SLLK
  2958  		case ASRW:
  2959  			opcode = op_SRLK
  2960  		case ARLL:
  2961  			opcode = op_RLL
  2962  		case ARLLG:
  2963  			opcode = op_RLLG
  2964  		case ASRAW:
  2965  			opcode = op_SRAK
  2966  		case ASRAD:
  2967  			opcode = op_SRAG
  2968  		}
  2969  		zRSY(opcode, uint32(r1), uint32(r3), uint32(b2), uint32(d2), asm)
  2970  
  2971  	case 8: // find leftmost one
  2972  		if p.To.Reg&1 != 0 {
  2973  			c.ctxt.Diag("target must be an even-numbered register")
  2974  		}
  2975  		// FLOGR also writes a mask to p.To.Reg+1.
  2976  		zRRE(op_FLOGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2977  
  2978  	case 9: // population count
  2979  		zRRE(op_POPCNT, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2980  
  2981  	case 10: // subtract reg [reg] reg
  2982  		r := int(p.Reg)
  2983  
  2984  		switch p.As {
  2985  		default:
  2986  		case ASUB:
  2987  			if r == 0 {
  2988  				zRRE(op_SGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2989  			} else {
  2990  				zRRF(op_SGRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2991  			}
  2992  		case ASUBC:
  2993  			if r == 0 {
  2994  				zRRE(op_SLGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2995  			} else {
  2996  				zRRF(op_SLGRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2997  			}
  2998  		case ASUBE:
  2999  			if r == 0 {
  3000  				r = int(p.To.Reg)
  3001  			}
  3002  			if r == int(p.To.Reg) {
  3003  				zRRE(op_SLBGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3004  			} else if p.From.Reg == p.To.Reg {
  3005  				zRRE(op_LGR, regtmp(p), uint32(p.From.Reg), asm)
  3006  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  3007  				zRRE(op_SLBGR, uint32(p.To.Reg), regtmp(p), asm)
  3008  			} else {
  3009  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  3010  				zRRE(op_SLBGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3011  			}
  3012  		case ASUBW:
  3013  			if r == 0 {
  3014  				zRR(op_SR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3015  			} else {
  3016  				zRRF(op_SRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  3017  			}
  3018  		}
  3019  
  3020  	case 11: // br/bl
  3021  		v := int32(0)
  3022  
  3023  		if p.To.Target() != nil {
  3024  			v = int32((p.To.Target().Pc - p.Pc) >> 1)
  3025  		}
  3026  
  3027  		if p.As == ABR && p.To.Sym == nil && int32(int16(v)) == v {
  3028  			zRI(op_BRC, 0xF, uint32(v), asm)
  3029  		} else {
  3030  			if p.As == ABL {
  3031  				zRIL(_b, op_BRASL, uint32(REG_LR), uint32(v), asm)
  3032  			} else {
  3033  				zRIL(_c, op_BRCL, 0xF, uint32(v), asm)
  3034  			}
  3035  			if p.To.Sym != nil {
  3036  				c.addcallreloc(p.To.Sym, p.To.Offset)
  3037  			}
  3038  		}
  3039  
  3040  	case 12:
  3041  		r1 := p.To.Reg
  3042  		d2 := c.vregoff(&p.From)
  3043  		b2 := p.From.Reg
  3044  		if b2 == 0 {
  3045  			b2 = REGSP
  3046  		}
  3047  		x2 := p.From.Index
  3048  		if -DISP20/2 > d2 || d2 >= DISP20/2 {
  3049  			zRIL(_a, op_LGFI, regtmp(p), uint32(d2), asm)
  3050  			if x2 != 0 {
  3051  				zRX(op_LA, regtmp(p), regtmp(p), uint32(x2), 0, asm)
  3052  			}
  3053  			x2 = int16(regtmp(p))
  3054  			d2 = 0
  3055  		}
  3056  		var opx, opxy uint32
  3057  		switch p.As {
  3058  		case AADD:
  3059  			opxy = op_AG
  3060  		case AADDC:
  3061  			opxy = op_ALG
  3062  		case AADDE:
  3063  			opxy = op_ALCG
  3064  		case AADDW:
  3065  			opx = op_A
  3066  			opxy = op_AY
  3067  		case AMULLW:
  3068  			opx = op_MS
  3069  			opxy = op_MSY
  3070  		case AMULLD:
  3071  			opxy = op_MSG
  3072  		case ASUB:
  3073  			opxy = op_SG
  3074  		case ASUBC:
  3075  			opxy = op_SLG
  3076  		case ASUBE:
  3077  			opxy = op_SLBG
  3078  		case ASUBW:
  3079  			opx = op_S
  3080  			opxy = op_SY
  3081  		case AAND:
  3082  			opxy = op_NG
  3083  		case AANDW:
  3084  			opx = op_N
  3085  			opxy = op_NY
  3086  		case AOR:
  3087  			opxy = op_OG
  3088  		case AORW:
  3089  			opx = op_O
  3090  			opxy = op_OY
  3091  		case AXOR:
  3092  			opxy = op_XG
  3093  		case AXORW:
  3094  			opx = op_X
  3095  			opxy = op_XY
  3096  		}
  3097  		if opx != 0 && 0 <= d2 && d2 < DISP12 {
  3098  			zRX(opx, uint32(r1), uint32(x2), uint32(b2), uint32(d2), asm)
  3099  		} else {
  3100  			zRXY(opxy, uint32(r1), uint32(x2), uint32(b2), uint32(d2), asm)
  3101  		}
  3102  
  3103  	case 13: // rotate, followed by operation
  3104  		r1 := p.To.Reg
  3105  		r2 := p.RestArgs[2].Reg
  3106  		i3 := uint8(p.From.Offset)        // start
  3107  		i4 := uint8(p.RestArgs[0].Offset) // end
  3108  		i5 := uint8(p.RestArgs[1].Offset) // rotate amount
  3109  		switch p.As {
  3110  		case ARNSBGT, ARXSBGT, AROSBGT:
  3111  			i3 |= 0x80 // test-results
  3112  		case ARISBGZ, ARISBGNZ, ARISBHGZ, ARISBLGZ:
  3113  			i4 |= 0x80 // zero-remaining-bits
  3114  		}
  3115  		var opcode uint32
  3116  		switch p.As {
  3117  		case ARNSBG, ARNSBGT:
  3118  			opcode = op_RNSBG
  3119  		case ARXSBG, ARXSBGT:
  3120  			opcode = op_RXSBG
  3121  		case AROSBG, AROSBGT:
  3122  			opcode = op_ROSBG
  3123  		case ARISBG, ARISBGZ:
  3124  			opcode = op_RISBG
  3125  		case ARISBGN, ARISBGNZ:
  3126  			opcode = op_RISBGN
  3127  		case ARISBHG, ARISBHGZ:
  3128  			opcode = op_RISBHG
  3129  		case ARISBLG, ARISBLGZ:
  3130  			opcode = op_RISBLG
  3131  		}
  3132  		zRIE(_f, uint32(opcode), uint32(r1), uint32(r2), 0, uint32(i3), uint32(i4), 0, uint32(i5), asm)
  3133  
  3134  	case 15: // br/bl (reg)
  3135  		r := p.To.Reg
  3136  		if p.As == ABCL || p.As == ABL {
  3137  			zRR(op_BASR, uint32(REG_LR), uint32(r), asm)
  3138  		} else {
  3139  			zRR(op_BCR, uint32(Always), uint32(r), asm)
  3140  		}
  3141  
  3142  	case 16: // conditional branch
  3143  		v := int32(0)
  3144  		if p.To.Target() != nil {
  3145  			v = int32((p.To.Target().Pc - p.Pc) >> 1)
  3146  		}
  3147  		mask := uint32(c.branchMask(p))
  3148  		if p.To.Sym == nil && int32(int16(v)) == v {
  3149  			zRI(op_BRC, mask, uint32(v), asm)
  3150  		} else {
  3151  			zRIL(_c, op_BRCL, mask, uint32(v), asm)
  3152  		}
  3153  		if p.To.Sym != nil {
  3154  			c.addrilreloc(p.To.Sym, p.To.Offset)
  3155  		}
  3156  
  3157  	case 17: // move on condition
  3158  		m3 := uint32(c.branchMask(p))
  3159  		zRRF(op_LOCGR, m3, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3160  
  3161  	case 18: // br/bl reg
  3162  		if p.As == ABL {
  3163  			zRR(op_BASR, uint32(REG_LR), uint32(p.To.Reg), asm)
  3164  		} else {
  3165  			zRR(op_BCR, uint32(Always), uint32(p.To.Reg), asm)
  3166  		}
  3167  
  3168  	case 19: // mov $sym+n(SB) reg
  3169  		d := c.vregoff(&p.From)
  3170  		zRIL(_b, op_LARL, uint32(p.To.Reg), 0, asm)
  3171  		if d&1 != 0 {
  3172  			zRX(op_LA, uint32(p.To.Reg), uint32(p.To.Reg), 0, 1, asm)
  3173  			d -= 1
  3174  		}
  3175  		c.addrilreloc(p.From.Sym, d)
  3176  
  3177  	case 21: // subtract $constant [reg] reg
  3178  		v := c.vregoff(&p.From)
  3179  		r := p.Reg
  3180  		if r == 0 {
  3181  			r = p.To.Reg
  3182  		}
  3183  		switch p.As {
  3184  		case ASUB:
  3185  			zRIL(_a, op_LGFI, uint32(regtmp(p)), uint32(v), asm)
  3186  			zRRF(op_SLGRK, uint32(regtmp(p)), 0, uint32(p.To.Reg), uint32(r), asm)
  3187  		case ASUBC:
  3188  			if r != p.To.Reg {
  3189  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  3190  			}
  3191  			zRIL(_a, op_SLGFI, uint32(p.To.Reg), uint32(v), asm)
  3192  		case ASUBW:
  3193  			if r != p.To.Reg {
  3194  				zRR(op_LR, uint32(p.To.Reg), uint32(r), asm)
  3195  			}
  3196  			zRIL(_a, op_SLFI, uint32(p.To.Reg), uint32(v), asm)
  3197  		}
  3198  
  3199  	case 22: // add/multiply $constant [reg] reg
  3200  		v := c.vregoff(&p.From)
  3201  		r := p.Reg
  3202  		if r == 0 {
  3203  			r = p.To.Reg
  3204  		}
  3205  		var opri, opril, oprie uint32
  3206  		switch p.As {
  3207  		case AADD:
  3208  			opri = op_AGHI
  3209  			opril = op_AGFI
  3210  			oprie = op_AGHIK
  3211  		case AADDC:
  3212  			opril = op_ALGFI
  3213  			oprie = op_ALGHSIK
  3214  		case AADDW:
  3215  			opri = op_AHI
  3216  			opril = op_AFI
  3217  			oprie = op_AHIK
  3218  		case AMULLW:
  3219  			opri = op_MHI
  3220  			opril = op_MSFI
  3221  		case AMULLD:
  3222  			opri = op_MGHI
  3223  			opril = op_MSGFI
  3224  		}
  3225  		if r != p.To.Reg && (oprie == 0 || int64(int16(v)) != v) {
  3226  			switch p.As {
  3227  			case AADD, AADDC, AMULLD:
  3228  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  3229  			case AADDW, AMULLW:
  3230  				zRR(op_LR, uint32(p.To.Reg), uint32(r), asm)
  3231  			}
  3232  			r = p.To.Reg
  3233  		}
  3234  		if opri != 0 && r == p.To.Reg && int64(int16(v)) == v {
  3235  			zRI(opri, uint32(p.To.Reg), uint32(v), asm)
  3236  		} else if oprie != 0 && int64(int16(v)) == v {
  3237  			zRIE(_d, oprie, uint32(p.To.Reg), uint32(r), uint32(v), 0, 0, 0, 0, asm)
  3238  		} else {
  3239  			zRIL(_a, opril, uint32(p.To.Reg), uint32(v), asm)
  3240  		}
  3241  
  3242  	case 23: // 64-bit logical op $constant reg
  3243  		// TODO(mundaym): merge with case 24.
  3244  		v := c.vregoff(&p.From)
  3245  		switch p.As {
  3246  		default:
  3247  			c.ctxt.Diag("%v is not supported", p)
  3248  		case AAND:
  3249  			if v >= 0 { // needs zero extend
  3250  				zRIL(_a, op_LGFI, regtmp(p), uint32(v), asm)
  3251  				zRRE(op_NGR, uint32(p.To.Reg), regtmp(p), asm)
  3252  			} else if int64(int16(v)) == v {
  3253  				zRI(op_NILL, uint32(p.To.Reg), uint32(v), asm)
  3254  			} else { //  r.To.Reg & 0xffffffff00000000 & uint32(v)
  3255  				zRIL(_a, op_NILF, uint32(p.To.Reg), uint32(v), asm)
  3256  			}
  3257  		case AOR:
  3258  			if int64(uint32(v)) != v { // needs sign extend
  3259  				zRIL(_a, op_LGFI, regtmp(p), uint32(v), asm)
  3260  				zRRE(op_OGR, uint32(p.To.Reg), regtmp(p), asm)
  3261  			} else if int64(uint16(v)) == v {
  3262  				zRI(op_OILL, uint32(p.To.Reg), uint32(v), asm)
  3263  			} else {
  3264  				zRIL(_a, op_OILF, uint32(p.To.Reg), uint32(v), asm)
  3265  			}
  3266  		case AXOR:
  3267  			if int64(uint32(v)) != v { // needs sign extend
  3268  				zRIL(_a, op_LGFI, regtmp(p), uint32(v), asm)
  3269  				zRRE(op_XGR, uint32(p.To.Reg), regtmp(p), asm)
  3270  			} else {
  3271  				zRIL(_a, op_XILF, uint32(p.To.Reg), uint32(v), asm)
  3272  			}
  3273  		}
  3274  
  3275  	case 24: // 32-bit logical op $constant reg
  3276  		v := c.vregoff(&p.From)
  3277  		switch p.As {
  3278  		case AANDW:
  3279  			if uint32(v&0xffff0000) == 0xffff0000 {
  3280  				zRI(op_NILL, uint32(p.To.Reg), uint32(v), asm)
  3281  			} else if uint32(v&0x0000ffff) == 0x0000ffff {
  3282  				zRI(op_NILH, uint32(p.To.Reg), uint32(v)>>16, asm)
  3283  			} else {
  3284  				zRIL(_a, op_NILF, uint32(p.To.Reg), uint32(v), asm)
  3285  			}
  3286  		case AORW:
  3287  			if uint32(v&0xffff0000) == 0 {
  3288  				zRI(op_OILL, uint32(p.To.Reg), uint32(v), asm)
  3289  			} else if uint32(v&0x0000ffff) == 0 {
  3290  				zRI(op_OILH, uint32(p.To.Reg), uint32(v)>>16, asm)
  3291  			} else {
  3292  				zRIL(_a, op_OILF, uint32(p.To.Reg), uint32(v), asm)
  3293  			}
  3294  		case AXORW:
  3295  			zRIL(_a, op_XILF, uint32(p.To.Reg), uint32(v), asm)
  3296  		}
  3297  
  3298  	case 25: // load on condition (register)
  3299  		m3 := uint32(c.branchMask(p))
  3300  		var opcode uint32
  3301  		switch p.As {
  3302  		case ALOCR:
  3303  			opcode = op_LOCR
  3304  		case ALOCGR:
  3305  			opcode = op_LOCGR
  3306  		}
  3307  		zRRF(opcode, m3, 0, uint32(p.To.Reg), uint32(p.Reg), asm)
  3308  
  3309  	case 26: // MOVD $offset(base)(index), reg
  3310  		v := c.regoff(&p.From)
  3311  		r := p.From.Reg
  3312  		if r == 0 {
  3313  			r = REGSP
  3314  		}
  3315  		i := p.From.Index
  3316  		if v >= 0 && v < DISP12 {
  3317  			zRX(op_LA, uint32(p.To.Reg), uint32(r), uint32(i), uint32(v), asm)
  3318  		} else if v >= -DISP20/2 && v < DISP20/2 {
  3319  			zRXY(op_LAY, uint32(p.To.Reg), uint32(r), uint32(i), uint32(v), asm)
  3320  		} else {
  3321  			zRIL(_a, op_LGFI, regtmp(p), uint32(v), asm)
  3322  			zRX(op_LA, uint32(p.To.Reg), uint32(r), regtmp(p), uint32(i), asm)
  3323  		}
  3324  
  3325  	case 31: // dword
  3326  		wd := uint64(c.vregoff(&p.From))
  3327  		*asm = append(*asm,
  3328  			uint8(wd>>56),
  3329  			uint8(wd>>48),
  3330  			uint8(wd>>40),
  3331  			uint8(wd>>32),
  3332  			uint8(wd>>24),
  3333  			uint8(wd>>16),
  3334  			uint8(wd>>8),
  3335  			uint8(wd))
  3336  
  3337  	case 32: // float op freg freg
  3338  		var opcode uint32
  3339  		switch p.As {
  3340  		default:
  3341  			c.ctxt.Diag("invalid opcode")
  3342  		case AFADD:
  3343  			opcode = op_ADBR
  3344  		case AFADDS:
  3345  			opcode = op_AEBR
  3346  		case AFDIV:
  3347  			opcode = op_DDBR
  3348  		case AFDIVS:
  3349  			opcode = op_DEBR
  3350  		case AFMUL:
  3351  			opcode = op_MDBR
  3352  		case AFMULS:
  3353  			opcode = op_MEEBR
  3354  		case AFSUB:
  3355  			opcode = op_SDBR
  3356  		case AFSUBS:
  3357  			opcode = op_SEBR
  3358  		}
  3359  		zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3360  
  3361  	case 33: // float op [freg] freg
  3362  		r := p.From.Reg
  3363  		if oclass(&p.From) == C_NONE {
  3364  			r = p.To.Reg
  3365  		}
  3366  		var opcode uint32
  3367  		switch p.As {
  3368  		default:
  3369  		case AFABS:
  3370  			opcode = op_LPDBR
  3371  		case AFNABS:
  3372  			opcode = op_LNDBR
  3373  		case ALPDFR:
  3374  			opcode = op_LPDFR
  3375  		case ALNDFR:
  3376  			opcode = op_LNDFR
  3377  		case AFNEG:
  3378  			opcode = op_LCDFR
  3379  		case AFNEGS:
  3380  			opcode = op_LCEBR
  3381  		case ALCDBR:
  3382  			opcode = op_LCDBR
  3383  		case ALEDBR:
  3384  			opcode = op_LEDBR
  3385  		case ALDEBR:
  3386  			opcode = op_LDEBR
  3387  		case AFSQRT:
  3388  			opcode = op_SQDBR
  3389  		case AFSQRTS:
  3390  			opcode = op_SQEBR
  3391  		}
  3392  		zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)
  3393  
  3394  	case 34: // float multiply-add freg freg freg
  3395  		var opcode uint32
  3396  		switch p.As {
  3397  		default:
  3398  			c.ctxt.Diag("invalid opcode")
  3399  		case AFMADD:
  3400  			opcode = op_MADBR
  3401  		case AFMADDS:
  3402  			opcode = op_MAEBR
  3403  		case AFMSUB:
  3404  			opcode = op_MSDBR
  3405  		case AFMSUBS:
  3406  			opcode = op_MSEBR
  3407  		}
  3408  		zRRD(opcode, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), asm)
  3409  
  3410  	case 35: // mov reg mem (no relocation)
  3411  		d2 := c.regoff(&p.To)
  3412  		b2 := p.To.Reg
  3413  		if b2 == 0 {
  3414  			b2 = REGSP
  3415  		}
  3416  		x2 := p.To.Index
  3417  		if d2 < -DISP20/2 || d2 >= DISP20/2 {
  3418  			zRIL(_a, op_LGFI, regtmp(p), uint32(d2), asm)
  3419  			if x2 != 0 {
  3420  				zRX(op_LA, regtmp(p), regtmp(p), uint32(x2), 0, asm)
  3421  			}
  3422  			x2 = int16(regtmp(p))
  3423  			d2 = 0
  3424  		}
  3425  		// Emits an RX instruction if an appropriate one exists and the displacement fits in 12 bits. Otherwise use an RXY instruction.
  3426  		if op, ok := c.zopstore12(p.As); ok && isU12(d2) {
  3427  			zRX(op, uint32(p.From.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
  3428  		} else {
  3429  			zRXY(c.zopstore(p.As), uint32(p.From.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
  3430  		}
  3431  
  3432  	case 36: // mov mem reg (no relocation)
  3433  		d2 := c.regoff(&p.From)
  3434  		b2 := p.From.Reg
  3435  		if b2 == 0 {
  3436  			b2 = REGSP
  3437  		}
  3438  		x2 := p.From.Index
  3439  		if d2 < -DISP20/2 || d2 >= DISP20/2 {
  3440  			zRIL(_a, op_LGFI, regtmp(p), uint32(d2), asm)
  3441  			if x2 != 0 {
  3442  				zRX(op_LA, regtmp(p), regtmp(p), uint32(x2), 0, asm)
  3443  			}
  3444  			x2 = int16(regtmp(p))
  3445  			d2 = 0
  3446  		}
  3447  		// Emits an RX instruction if an appropriate one exists and the displacement fits in 12 bits. Otherwise use an RXY instruction.
  3448  		if op, ok := c.zopload12(p.As); ok && isU12(d2) {
  3449  			zRX(op, uint32(p.To.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
  3450  		} else {
  3451  			zRXY(c.zopload(p.As), uint32(p.To.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
  3452  		}
  3453  
  3454  	case 40: // word/byte
  3455  		wd := uint32(c.regoff(&p.From))
  3456  		if p.As == AWORD { //WORD
  3457  			*asm = append(*asm, uint8(wd>>24), uint8(wd>>16), uint8(wd>>8), uint8(wd))
  3458  		} else { //BYTE
  3459  			*asm = append(*asm, uint8(wd))
  3460  		}
  3461  
  3462  	case 41: // branch on count
  3463  		r1 := p.From.Reg
  3464  		ri2 := (p.To.Target().Pc - p.Pc) >> 1
  3465  		if int64(int16(ri2)) != ri2 {
  3466  			c.ctxt.Diag("branch target too far away")
  3467  		}
  3468  		var opcode uint32
  3469  		switch p.As {
  3470  		case ABRCT:
  3471  			opcode = op_BRCT
  3472  		case ABRCTG:
  3473  			opcode = op_BRCTG
  3474  		}
  3475  		zRI(opcode, uint32(r1), uint32(ri2), asm)
  3476  
  3477  	case 47: // negate [reg] reg
  3478  		r := p.From.Reg
  3479  		if r == 0 {
  3480  			r = p.To.Reg
  3481  		}
  3482  		switch p.As {
  3483  		case ANEG:
  3484  			zRRE(op_LCGR, uint32(p.To.Reg), uint32(r), asm)
  3485  		case ANEGW:
  3486  			zRRE(op_LCGFR, uint32(p.To.Reg), uint32(r), asm)
  3487  		}
  3488  
  3489  	case 48: // floating-point round to integer
  3490  		m3 := c.vregoff(&p.From)
  3491  		if 0 > m3 || m3 > 7 {
  3492  			c.ctxt.Diag("mask (%v) must be in the range [0, 7]", m3)
  3493  		}
  3494  		var opcode uint32
  3495  		switch p.As {
  3496  		case AFIEBR:
  3497  			opcode = op_FIEBR
  3498  		case AFIDBR:
  3499  			opcode = op_FIDBR
  3500  		}
  3501  		zRRF(opcode, uint32(m3), 0, uint32(p.To.Reg), uint32(p.Reg), asm)
  3502  
  3503  	case 49: // copysign
  3504  		zRRF(op_CPSDR, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(p.Reg), asm)
  3505  
  3506  	case 50: // load and test
  3507  		var opcode uint32
  3508  		switch p.As {
  3509  		case ALTEBR:
  3510  			opcode = op_LTEBR
  3511  		case ALTDBR:
  3512  			opcode = op_LTDBR
  3513  		}
  3514  		zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3515  
  3516  	case 51: // test data class (immediate only)
  3517  		var opcode uint32
  3518  		switch p.As {
  3519  		case ATCEB:
  3520  			opcode = op_TCEB
  3521  		case ATCDB:
  3522  			opcode = op_TCDB
  3523  		}
  3524  		d2 := c.regoff(&p.To)
  3525  		zRXE(opcode, uint32(p.From.Reg), 0, 0, uint32(d2), 0, asm)
  3526  
  3527  	case 62: // equivalent of Mul64 in math/bits
  3528  		zRRE(op_MLGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3529  
  3530  	case 66:
  3531  		zRR(op_BCR, uint32(Never), 0, asm)
  3532  
  3533  	case 67: // fmov $0 freg
  3534  		var opcode uint32
  3535  		switch p.As {
  3536  		case AFMOVS:
  3537  			opcode = op_LZER
  3538  		case AFMOVD:
  3539  			opcode = op_LZDR
  3540  		}
  3541  		zRRE(opcode, uint32(p.To.Reg), 0, asm)
  3542  
  3543  	case 68: // movw areg reg
  3544  		zRRE(op_EAR, uint32(p.To.Reg), uint32(p.From.Reg-REG_AR0), asm)
  3545  
  3546  	case 69: // movw reg areg
  3547  		zRRE(op_SAR, uint32(p.To.Reg-REG_AR0), uint32(p.From.Reg), asm)
  3548  
  3549  	case 70: // cmp reg reg
  3550  		if p.As == ACMPW || p.As == ACMPWU {
  3551  			zRR(c.zoprr(p.As), uint32(p.From.Reg), uint32(p.To.Reg), asm)
  3552  		} else {
  3553  			zRRE(c.zoprre(p.As), uint32(p.From.Reg), uint32(p.To.Reg), asm)
  3554  		}
  3555  
  3556  	case 71: // cmp reg $constant
  3557  		v := c.vregoff(&p.To)
  3558  		switch p.As {
  3559  		case ACMP, ACMPW:
  3560  			if int64(int32(v)) != v {
  3561  				c.ctxt.Diag("%v overflows an int32", v)
  3562  			}
  3563  		case ACMPU, ACMPWU:
  3564  			if int64(uint32(v)) != v {
  3565  				c.ctxt.Diag("%v overflows a uint32", v)
  3566  			}
  3567  		}
  3568  		if p.As == ACMP && int64(int16(v)) == v {
  3569  			zRI(op_CGHI, uint32(p.From.Reg), uint32(v), asm)
  3570  		} else if p.As == ACMPW && int64(int16(v)) == v {
  3571  			zRI(op_CHI, uint32(p.From.Reg), uint32(v), asm)
  3572  		} else {
  3573  			zRIL(_a, c.zopril(p.As), uint32(p.From.Reg), uint32(v), asm)
  3574  		}
  3575  
  3576  	case 72: // mov $constant mem
  3577  		v := c.regoff(&p.From)
  3578  		d := c.regoff(&p.To)
  3579  		r := p.To.Reg
  3580  		if p.To.Index != 0 {
  3581  			c.ctxt.Diag("cannot use index register")
  3582  		}
  3583  		if r == 0 {
  3584  			r = REGSP
  3585  		}
  3586  		var opcode uint32
  3587  		switch p.As {
  3588  		case AMOVD:
  3589  			opcode = op_MVGHI
  3590  		case AMOVW, AMOVWZ:
  3591  			opcode = op_MVHI
  3592  		case AMOVH, AMOVHZ:
  3593  			opcode = op_MVHHI
  3594  		case AMOVB, AMOVBZ:
  3595  			opcode = op_MVI
  3596  		}
  3597  		if d < 0 || d >= DISP12 {
  3598  			if r == int16(regtmp(p)) {
  3599  				c.ctxt.Diag("displacement must be in range [0, 4096) to use %v", r)
  3600  			}
  3601  			if d >= -DISP20/2 && d < DISP20/2 {
  3602  				if opcode == op_MVI {
  3603  					opcode = op_MVIY
  3604  				} else {
  3605  					zRXY(op_LAY, uint32(regtmp(p)), 0, uint32(r), uint32(d), asm)
  3606  					r = int16(regtmp(p))
  3607  					d = 0
  3608  				}
  3609  			} else {
  3610  				zRIL(_a, op_LGFI, regtmp(p), uint32(d), asm)
  3611  				zRX(op_LA, regtmp(p), regtmp(p), uint32(r), 0, asm)
  3612  				r = int16(regtmp(p))
  3613  				d = 0
  3614  			}
  3615  		}
  3616  		switch opcode {
  3617  		case op_MVI:
  3618  			zSI(opcode, uint32(v), uint32(r), uint32(d), asm)
  3619  		case op_MVIY:
  3620  			zSIY(opcode, uint32(v), uint32(r), uint32(d), asm)
  3621  		default:
  3622  			zSIL(opcode, uint32(r), uint32(d), uint32(v), asm)
  3623  		}
  3624  
  3625  	case 73: //Illegal opcode with SIGTRAP Exception
  3626  		zE(op_BRRK, asm)
  3627  
  3628  	case 74: // mov reg addr (including relocation)
  3629  		i2 := c.regoff(&p.To)
  3630  		switch p.As {
  3631  		case AMOVD:
  3632  			zRIL(_b, op_STGRL, uint32(p.From.Reg), 0, asm)
  3633  		case AMOVW, AMOVWZ: // The zero extension doesn't affect store instructions
  3634  			zRIL(_b, op_STRL, uint32(p.From.Reg), 0, asm)
  3635  		case AMOVH, AMOVHZ: // The zero extension doesn't affect store instructions
  3636  			zRIL(_b, op_STHRL, uint32(p.From.Reg), 0, asm)
  3637  		case AMOVB, AMOVBZ: // The zero extension doesn't affect store instructions
  3638  			zRIL(_b, op_LARL, regtmp(p), 0, asm)
  3639  			adj := uint32(0) // adjustment needed for odd addresses
  3640  			if i2&1 != 0 {
  3641  				i2 -= 1
  3642  				adj = 1
  3643  			}
  3644  			zRX(op_STC, uint32(p.From.Reg), 0, regtmp(p), adj, asm)
  3645  		case AFMOVD:
  3646  			zRIL(_b, op_LARL, regtmp(p), 0, asm)
  3647  			zRX(op_STD, uint32(p.From.Reg), 0, regtmp(p), 0, asm)
  3648  		case AFMOVS:
  3649  			zRIL(_b, op_LARL, regtmp(p), 0, asm)
  3650  			zRX(op_STE, uint32(p.From.Reg), 0, regtmp(p), 0, asm)
  3651  		}
  3652  		c.addrilreloc(p.To.Sym, int64(i2))
  3653  
  3654  	case 75: // mov addr reg (including relocation)
  3655  		i2 := c.regoff(&p.From)
  3656  		switch p.As {
  3657  		case AMOVD:
  3658  			if i2&1 != 0 {
  3659  				zRIL(_b, op_LARL, regtmp(p), 0, asm)
  3660  				zRXY(op_LG, uint32(p.To.Reg), regtmp(p), 0, 1, asm)
  3661  				i2 -= 1
  3662  			} else {
  3663  				zRIL(_b, op_LGRL, uint32(p.To.Reg), 0, asm)
  3664  			}
  3665  		case AMOVW:
  3666  			zRIL(_b, op_LGFRL, uint32(p.To.Reg), 0, asm)
  3667  		case AMOVWZ:
  3668  			zRIL(_b, op_LLGFRL, uint32(p.To.Reg), 0, asm)
  3669  		case AMOVH:
  3670  			zRIL(_b, op_LGHRL, uint32(p.To.Reg), 0, asm)
  3671  		case AMOVHZ:
  3672  			zRIL(_b, op_LLGHRL, uint32(p.To.Reg), 0, asm)
  3673  		case AMOVB, AMOVBZ:
  3674  			zRIL(_b, op_LARL, regtmp(p), 0, asm)
  3675  			adj := uint32(0) // adjustment needed for odd addresses
  3676  			if i2&1 != 0 {
  3677  				i2 -= 1
  3678  				adj = 1
  3679  			}
  3680  			switch p.As {
  3681  			case AMOVB:
  3682  				zRXY(op_LGB, uint32(p.To.Reg), 0, regtmp(p), adj, asm)
  3683  			case AMOVBZ:
  3684  				zRXY(op_LLGC, uint32(p.To.Reg), 0, regtmp(p), adj, asm)
  3685  			}
  3686  		case AFMOVD:
  3687  			zRIL(_a, op_LARL, regtmp(p), 0, asm)
  3688  			zRX(op_LD, uint32(p.To.Reg), 0, regtmp(p), 0, asm)
  3689  		case AFMOVS:
  3690  			zRIL(_a, op_LARL, regtmp(p), 0, asm)
  3691  			zRX(op_LE, uint32(p.To.Reg), 0, regtmp(p), 0, asm)
  3692  		}
  3693  		c.addrilreloc(p.From.Sym, int64(i2))
  3694  
  3695  	case 76: // set program mask
  3696  		zRR(op_SPM, uint32(p.From.Reg), 0, asm)
  3697  
  3698  	case 77: // syscall $constant
  3699  		if p.From.Offset > 255 || p.From.Offset < 1 {
  3700  			c.ctxt.Diag("illegal system call; system call number out of range: %v", p)
  3701  			zE(op_TRAP2, asm) // trap always
  3702  		} else {
  3703  			zI(op_SVC, uint32(p.From.Offset), asm)
  3704  		}
  3705  
  3706  	case 78: // undef
  3707  		// "An instruction consisting entirely of binary 0s is guaranteed
  3708  		// always to be an illegal instruction."
  3709  		*asm = append(*asm, 0, 0, 0, 0)
  3710  
  3711  	case 79: // compare and swap reg reg reg
  3712  		v := c.regoff(&p.To)
  3713  		if v < 0 {
  3714  			v = 0
  3715  		}
  3716  		if p.As == ACS {
  3717  			zRS(op_CS, uint32(p.From.Reg), uint32(p.Reg), uint32(p.To.Reg), uint32(v), asm)
  3718  		} else if p.As == ACSG {
  3719  			zRSY(op_CSG, uint32(p.From.Reg), uint32(p.Reg), uint32(p.To.Reg), uint32(v), asm)
  3720  		}
  3721  
  3722  	case 80: // sync
  3723  		zRR(op_BCR, 14, 0, asm) // fast-BCR-serialization
  3724  
  3725  	case 81: // float to fixed and fixed to float moves (no conversion)
  3726  		switch p.As {
  3727  		case ALDGR:
  3728  			zRRE(op_LDGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3729  		case ALGDR:
  3730  			zRRE(op_LGDR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3731  		}
  3732  
  3733  	case 82: // fixed to float conversion
  3734  		var opcode uint32
  3735  		switch p.As {
  3736  		default:
  3737  			log.Fatalf("unexpected opcode %v", p.As)
  3738  		case ACEFBRA:
  3739  			opcode = op_CEFBRA
  3740  		case ACDFBRA:
  3741  			opcode = op_CDFBRA
  3742  		case ACEGBRA:
  3743  			opcode = op_CEGBRA
  3744  		case ACDGBRA:
  3745  			opcode = op_CDGBRA
  3746  		case ACELFBR:
  3747  			opcode = op_CELFBR
  3748  		case ACDLFBR:
  3749  			opcode = op_CDLFBR
  3750  		case ACELGBR:
  3751  			opcode = op_CELGBR
  3752  		case ACDLGBR:
  3753  			opcode = op_CDLGBR
  3754  		}
  3755  		// set immediate operand M3 to 0 to use the default BFP rounding mode
  3756  		// (usually round to nearest, ties to even)
  3757  		// TODO(mundaym): should this be fixed at round to nearest, ties to even?
  3758  		// M4 is reserved and must be 0
  3759  		zRRF(opcode, 0, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3760  
  3761  	case 83: // float to fixed conversion
  3762  		var opcode uint32
  3763  		switch p.As {
  3764  		default:
  3765  			log.Fatalf("unexpected opcode %v", p.As)
  3766  		case ACFEBRA:
  3767  			opcode = op_CFEBRA
  3768  		case ACFDBRA:
  3769  			opcode = op_CFDBRA
  3770  		case ACGEBRA:
  3771  			opcode = op_CGEBRA
  3772  		case ACGDBRA:
  3773  			opcode = op_CGDBRA
  3774  		case ACLFEBR:
  3775  			opcode = op_CLFEBR
  3776  		case ACLFDBR:
  3777  			opcode = op_CLFDBR
  3778  		case ACLGEBR:
  3779  			opcode = op_CLGEBR
  3780  		case ACLGDBR:
  3781  			opcode = op_CLGDBR
  3782  		}
  3783  		// set immediate operand M3 to 5 for rounding toward zero (required by Go spec)
  3784  		// M4 is reserved and must be 0
  3785  		zRRF(opcode, 5, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3786  
  3787  	case 84: // storage-and-storage operations $length mem mem
  3788  		l := c.regoff(&p.From)
  3789  		if l < 1 || l > 256 {
  3790  			c.ctxt.Diag("number of bytes (%v) not in range [1,256]", l)
  3791  		}
  3792  		if p.GetFrom3().Index != 0 || p.To.Index != 0 {
  3793  			c.ctxt.Diag("cannot use index reg")
  3794  		}
  3795  		b1 := p.To.Reg
  3796  		b2 := p.GetFrom3().Reg
  3797  		if b1 == 0 {
  3798  			b1 = REGSP
  3799  		}
  3800  		if b2 == 0 {
  3801  			b2 = REGSP
  3802  		}
  3803  		d1 := c.regoff(&p.To)
  3804  		d2 := c.regoff(p.GetFrom3())
  3805  		if d1 < 0 || d1 >= DISP12 {
  3806  			if b2 == int16(regtmp(p)) {
  3807  				c.ctxt.Diag("regtmp(p) conflict")
  3808  			}
  3809  			if b1 != int16(regtmp(p)) {
  3810  				zRRE(op_LGR, regtmp(p), uint32(b1), asm)
  3811  			}
  3812  			zRIL(_a, op_AGFI, regtmp(p), uint32(d1), asm)
  3813  			if d1 == d2 && b1 == b2 {
  3814  				d2 = 0
  3815  				b2 = int16(regtmp(p))
  3816  			}
  3817  			d1 = 0
  3818  			b1 = int16(regtmp(p))
  3819  		}
  3820  		if d2 < 0 || d2 >= DISP12 {
  3821  			if b1 == REGTMP2 {
  3822  				c.ctxt.Diag("REGTMP2 conflict")
  3823  			}
  3824  			if b2 != REGTMP2 {
  3825  				zRRE(op_LGR, REGTMP2, uint32(b2), asm)
  3826  			}
  3827  			zRIL(_a, op_AGFI, REGTMP2, uint32(d2), asm)
  3828  			d2 = 0
  3829  			b2 = REGTMP2
  3830  		}
  3831  		var opcode uint32
  3832  		switch p.As {
  3833  		default:
  3834  			c.ctxt.Diag("unexpected opcode %v", p.As)
  3835  		case AMVC:
  3836  			opcode = op_MVC
  3837  		case AMVCIN:
  3838  			opcode = op_MVCIN
  3839  		case ACLC:
  3840  			opcode = op_CLC
  3841  			// swap operand order for CLC so that it matches CMP
  3842  			b1, b2 = b2, b1
  3843  			d1, d2 = d2, d1
  3844  		case AXC:
  3845  			opcode = op_XC
  3846  		case AOC:
  3847  			opcode = op_OC
  3848  		case ANC:
  3849  			opcode = op_NC
  3850  		}
  3851  		zSS(_a, opcode, uint32(l-1), 0, uint32(b1), uint32(d1), uint32(b2), uint32(d2), asm)
  3852  
  3853  	case 85: // load address relative long
  3854  		v := c.regoff(&p.From)
  3855  		if p.From.Sym == nil {
  3856  			if (v & 1) != 0 {
  3857  				c.ctxt.Diag("cannot use LARL with odd offset: %v", v)
  3858  			}
  3859  		} else {
  3860  			c.addrilreloc(p.From.Sym, int64(v))
  3861  			v = 0
  3862  		}
  3863  		zRIL(_b, op_LARL, uint32(p.To.Reg), uint32(v>>1), asm)
  3864  
  3865  	case 86: // load address
  3866  		d := c.vregoff(&p.From)
  3867  		x := p.From.Index
  3868  		b := p.From.Reg
  3869  		if b == 0 {
  3870  			b = REGSP
  3871  		}
  3872  		switch p.As {
  3873  		case ALA:
  3874  			zRX(op_LA, uint32(p.To.Reg), uint32(x), uint32(b), uint32(d), asm)
  3875  		case ALAY:
  3876  			zRXY(op_LAY, uint32(p.To.Reg), uint32(x), uint32(b), uint32(d), asm)
  3877  		}
  3878  
  3879  	case 87: // execute relative long
  3880  		v := c.vregoff(&p.From)
  3881  		if p.From.Sym == nil {
  3882  			if v&1 != 0 {
  3883  				c.ctxt.Diag("cannot use EXRL with odd offset: %v", v)
  3884  			}
  3885  		} else {
  3886  			c.addrilreloc(p.From.Sym, v)
  3887  			v = 0
  3888  		}
  3889  		zRIL(_b, op_EXRL, uint32(p.To.Reg), uint32(v>>1), asm)
  3890  
  3891  	case 88: // store clock
  3892  		var opcode uint32
  3893  		switch p.As {
  3894  		case ASTCK:
  3895  			opcode = op_STCK
  3896  		case ASTCKC:
  3897  			opcode = op_STCKC
  3898  		case ASTCKE:
  3899  			opcode = op_STCKE
  3900  		case ASTCKF:
  3901  			opcode = op_STCKF
  3902  		}
  3903  		v := c.vregoff(&p.To)
  3904  		r := p.To.Reg
  3905  		if r == 0 {
  3906  			r = REGSP
  3907  		}
  3908  		zS(opcode, uint32(r), uint32(v), asm)
  3909  
  3910  	case 89: // compare and branch reg reg
  3911  		var v int32
  3912  		if p.To.Target() != nil {
  3913  			v = int32((p.To.Target().Pc - p.Pc) >> 1)
  3914  		}
  3915  
  3916  		// Some instructions take a mask as the first argument.
  3917  		r1, r2 := p.From.Reg, p.Reg
  3918  		if p.From.Type == obj.TYPE_CONST {
  3919  			r1, r2 = p.Reg, p.RestArgs[0].Reg
  3920  		}
  3921  		m3 := uint32(c.branchMask(p))
  3922  
  3923  		var opcode uint32
  3924  		switch p.As {
  3925  		case ACRJ:
  3926  			// COMPARE AND BRANCH RELATIVE (32)
  3927  			opcode = op_CRJ
  3928  		case ACGRJ, ACMPBEQ, ACMPBGE, ACMPBGT, ACMPBLE, ACMPBLT, ACMPBNE:
  3929  			// COMPARE AND BRANCH RELATIVE (64)
  3930  			opcode = op_CGRJ
  3931  		case ACLRJ:
  3932  			// COMPARE LOGICAL AND BRANCH RELATIVE (32)
  3933  			opcode = op_CLRJ
  3934  		case ACLGRJ, ACMPUBEQ, ACMPUBGE, ACMPUBGT, ACMPUBLE, ACMPUBLT, ACMPUBNE:
  3935  			// COMPARE LOGICAL AND BRANCH RELATIVE (64)
  3936  			opcode = op_CLGRJ
  3937  		}
  3938  
  3939  		if int32(int16(v)) != v {
  3940  			// The branch is too far for one instruction so crack
  3941  			// `CMPBEQ x, y, target` into:
  3942  			//
  3943  			//     CMPBNE x, y, 2(PC)
  3944  			//     BR     target
  3945  			//
  3946  			// Note that the instruction sequence MUST NOT clobber
  3947  			// the condition code.
  3948  			m3 ^= 0xe // invert 3-bit mask
  3949  			zRIE(_b, opcode, uint32(r1), uint32(r2), uint32(sizeRIE+sizeRIL)/2, 0, 0, m3, 0, asm)
  3950  			zRIL(_c, op_BRCL, uint32(Always), uint32(v-sizeRIE/2), asm)
  3951  		} else {
  3952  			zRIE(_b, opcode, uint32(r1), uint32(r2), uint32(v), 0, 0, m3, 0, asm)
  3953  		}
  3954  
  3955  	case 90: // compare and branch reg $constant
  3956  		var v int32
  3957  		if p.To.Target() != nil {
  3958  			v = int32((p.To.Target().Pc - p.Pc) >> 1)
  3959  		}
  3960  
  3961  		// Some instructions take a mask as the first argument.
  3962  		r1, i2 := p.From.Reg, p.RestArgs[0].Offset
  3963  		if p.From.Type == obj.TYPE_CONST {
  3964  			r1 = p.Reg
  3965  		}
  3966  		m3 := uint32(c.branchMask(p))
  3967  
  3968  		var opcode uint32
  3969  		switch p.As {
  3970  		case ACIJ:
  3971  			opcode = op_CIJ
  3972  		case ACGIJ, ACMPBEQ, ACMPBGE, ACMPBGT, ACMPBLE, ACMPBLT, ACMPBNE:
  3973  			opcode = op_CGIJ
  3974  		case ACLIJ:
  3975  			opcode = op_CLIJ
  3976  		case ACLGIJ, ACMPUBEQ, ACMPUBGE, ACMPUBGT, ACMPUBLE, ACMPUBLT, ACMPUBNE:
  3977  			opcode = op_CLGIJ
  3978  		}
  3979  		if int32(int16(v)) != v {
  3980  			// The branch is too far for one instruction so crack
  3981  			// `CMPBEQ x, $0, target` into:
  3982  			//
  3983  			//     CMPBNE x, $0, 2(PC)
  3984  			//     BR     target
  3985  			//
  3986  			// Note that the instruction sequence MUST NOT clobber
  3987  			// the condition code.
  3988  			m3 ^= 0xe // invert 3-bit mask
  3989  			zRIE(_c, opcode, uint32(r1), m3, uint32(sizeRIE+sizeRIL)/2, 0, 0, 0, uint32(i2), asm)
  3990  			zRIL(_c, op_BRCL, uint32(Always), uint32(v-sizeRIE/2), asm)
  3991  		} else {
  3992  			zRIE(_c, opcode, uint32(r1), m3, uint32(v), 0, 0, 0, uint32(i2), asm)
  3993  		}
  3994  
  3995  	case 91: // test under mask (immediate)
  3996  		var opcode uint32
  3997  		switch p.As {
  3998  		case ATMHH:
  3999  			opcode = op_TMHH
  4000  		case ATMHL:
  4001  			opcode = op_TMHL
  4002  		case ATMLH:
  4003  			opcode = op_TMLH
  4004  		case ATMLL:
  4005  			opcode = op_TMLL
  4006  		}
  4007  		zRI(opcode, uint32(p.From.Reg), uint32(c.vregoff(&p.To)), asm)
  4008  
  4009  	case 92: // insert program mask
  4010  		zRRE(op_IPM, uint32(p.From.Reg), 0, asm)
  4011  
  4012  	case 93: // GOT lookup
  4013  		v := c.vregoff(&p.To)
  4014  		if v != 0 {
  4015  			c.ctxt.Diag("invalid offset against GOT slot %v", p)
  4016  		}
  4017  		zRIL(_b, op_LGRL, uint32(p.To.Reg), 0, asm)
  4018  		c.cursym.AddRel(c.ctxt, obj.Reloc{
  4019  			Type: objabi.R_GOTPCREL,
  4020  			Off:  int32(c.pc + 2),
  4021  			Siz:  4,
  4022  			Sym:  p.From.Sym,
  4023  			Add:  2 + 4,
  4024  		})
  4025  
  4026  	case 94: // TLS local exec model
  4027  		zRIL(_b, op_LARL, regtmp(p), (sizeRIL+sizeRXY+sizeRI)>>1, asm)
  4028  		zRXY(op_LG, uint32(p.To.Reg), regtmp(p), 0, 0, asm)
  4029  		zRI(op_BRC, 0xF, (sizeRI+8)>>1, asm)
  4030  		*asm = append(*asm, 0, 0, 0, 0, 0, 0, 0, 0)
  4031  		c.cursym.AddRel(c.ctxt, obj.Reloc{
  4032  			Type: objabi.R_TLS_LE,
  4033  			Off:  int32(c.pc + sizeRIL + sizeRXY + sizeRI),
  4034  			Siz:  8,
  4035  			Sym:  p.From.Sym,
  4036  		})
  4037  
  4038  	case 95: // TLS initial exec model
  4039  		// Assembly                   | Relocation symbol    | Done Here?
  4040  		// --------------------------------------------------------------
  4041  		// ear  %r11, %a0             |                      |
  4042  		// sllg %r11, %r11, 32        |                      |
  4043  		// ear  %r11, %a1             |                      |
  4044  		// larl %r10, <var>@indntpoff | R_390_TLS_IEENT      | Y
  4045  		// lg   %r10, 0(%r10)         | R_390_TLS_LOAD (tag) | Y
  4046  		// la   %r10, 0(%r10, %r11)   |                      |
  4047  		// --------------------------------------------------------------
  4048  
  4049  		// R_390_TLS_IEENT
  4050  		zRIL(_b, op_LARL, regtmp(p), 0, asm)
  4051  		c.cursym.AddRel(c.ctxt, obj.Reloc{
  4052  			Type: objabi.R_TLS_IE,
  4053  			Off:  int32(c.pc + 2),
  4054  			Siz:  4,
  4055  			Sym:  p.From.Sym,
  4056  			Add:  2 + 4,
  4057  		})
  4058  
  4059  		// R_390_TLS_LOAD
  4060  		zRXY(op_LGF, uint32(p.To.Reg), regtmp(p), 0, 0, asm)
  4061  		// TODO(mundaym): add R_390_TLS_LOAD relocation here
  4062  		// not strictly required but might allow the linker to optimize
  4063  
  4064  	case 96: // clear macro
  4065  		length := c.vregoff(&p.From)
  4066  		offset := c.vregoff(&p.To)
  4067  		reg := p.To.Reg
  4068  		if reg == 0 {
  4069  			reg = REGSP
  4070  		}
  4071  		if length <= 0 {
  4072  			c.ctxt.Diag("cannot CLEAR %d bytes, must be greater than 0", length)
  4073  		}
  4074  		for length > 0 {
  4075  			if offset < 0 || offset >= DISP12 {
  4076  				if offset >= -DISP20/2 && offset < DISP20/2 {
  4077  					zRXY(op_LAY, regtmp(p), uint32(reg), 0, uint32(offset), asm)
  4078  				} else {
  4079  					if reg != int16(regtmp(p)) {
  4080  						zRRE(op_LGR, regtmp(p), uint32(reg), asm)
  4081  					}
  4082  					zRIL(_a, op_AGFI, regtmp(p), uint32(offset), asm)
  4083  				}
  4084  				reg = int16(regtmp(p))
  4085  				offset = 0
  4086  			}
  4087  			size := length
  4088  			if size > 256 {
  4089  				size = 256
  4090  			}
  4091  
  4092  			switch size {
  4093  			case 1:
  4094  				zSI(op_MVI, 0, uint32(reg), uint32(offset), asm)
  4095  			case 2:
  4096  				zSIL(op_MVHHI, uint32(reg), uint32(offset), 0, asm)
  4097  			case 4:
  4098  				zSIL(op_MVHI, uint32(reg), uint32(offset), 0, asm)
  4099  			case 8:
  4100  				zSIL(op_MVGHI, uint32(reg), uint32(offset), 0, asm)
  4101  			default:
  4102  				zSS(_a, op_XC, uint32(size-1), 0, uint32(reg), uint32(offset), uint32(reg), uint32(offset), asm)
  4103  			}
  4104  
  4105  			length -= size
  4106  			offset += size
  4107  		}
  4108  
  4109  	case 97: // store multiple
  4110  		rstart := p.From.Reg
  4111  		rend := p.Reg
  4112  		offset := c.regoff(&p.To)
  4113  		reg := p.To.Reg
  4114  		if reg == 0 {
  4115  			reg = REGSP
  4116  		}
  4117  		if offset < -DISP20/2 || offset >= DISP20/2 {
  4118  			if reg != int16(regtmp(p)) {
  4119  				zRRE(op_LGR, regtmp(p), uint32(reg), asm)
  4120  			}
  4121  			zRIL(_a, op_AGFI, regtmp(p), uint32(offset), asm)
  4122  			reg = int16(regtmp(p))
  4123  			offset = 0
  4124  		}
  4125  		switch p.As {
  4126  		case ASTMY:
  4127  			if offset >= 0 && offset < DISP12 {
  4128  				zRS(op_STM, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  4129  			} else {
  4130  				zRSY(op_STMY, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  4131  			}
  4132  		case ASTMG:
  4133  			zRSY(op_STMG, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  4134  		}
  4135  
  4136  	case 98: // load multiple
  4137  		rstart := p.Reg
  4138  		rend := p.To.Reg
  4139  		offset := c.regoff(&p.From)
  4140  		reg := p.From.Reg
  4141  		if reg == 0 {
  4142  			reg = REGSP
  4143  		}
  4144  		if offset < -DISP20/2 || offset >= DISP20/2 {
  4145  			if reg != int16(regtmp(p)) {
  4146  				zRRE(op_LGR, regtmp(p), uint32(reg), asm)
  4147  			}
  4148  			zRIL(_a, op_AGFI, regtmp(p), uint32(offset), asm)
  4149  			reg = int16(regtmp(p))
  4150  			offset = 0
  4151  		}
  4152  		switch p.As {
  4153  		case ALMY:
  4154  			if offset >= 0 && offset < DISP12 {
  4155  				zRS(op_LM, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  4156  			} else {
  4157  				zRSY(op_LMY, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  4158  			}
  4159  		case ALMG:
  4160  			zRSY(op_LMG, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  4161  		}
  4162  
  4163  	case 99: // interlocked load and op
  4164  		if p.To.Index != 0 {
  4165  			c.ctxt.Diag("cannot use indexed address")
  4166  		}
  4167  		offset := c.regoff(&p.To)
  4168  		if offset < -DISP20/2 || offset >= DISP20/2 {
  4169  			c.ctxt.Diag("%v does not fit into 20-bit signed integer", offset)
  4170  		}
  4171  		var opcode uint32
  4172  		switch p.As {
  4173  		case ALAA:
  4174  			opcode = op_LAA
  4175  		case ALAAG:
  4176  			opcode = op_LAAG
  4177  		case ALAAL:
  4178  			opcode = op_LAAL
  4179  		case ALAALG:
  4180  			opcode = op_LAALG
  4181  		case ALAN:
  4182  			opcode = op_LAN
  4183  		case ALANG:
  4184  			opcode = op_LANG
  4185  		case ALAX:
  4186  			opcode = op_LAX
  4187  		case ALAXG:
  4188  			opcode = op_LAXG
  4189  		case ALAO:
  4190  			opcode = op_LAO
  4191  		case ALAOG:
  4192  			opcode = op_LAOG
  4193  		}
  4194  		zRSY(opcode, uint32(p.Reg), uint32(p.From.Reg), uint32(p.To.Reg), uint32(offset), asm)
  4195  
  4196  	case 100: // VRX STORE
  4197  		op, m3, _ := vop(p.As)
  4198  		v1 := p.From.Reg
  4199  		if p.Reg != 0 {
  4200  			m3 = uint32(c.vregoff(&p.From))
  4201  			v1 = p.Reg
  4202  		}
  4203  		b2 := p.To.Reg
  4204  		if b2 == 0 {
  4205  			b2 = REGSP
  4206  		}
  4207  		d2 := uint32(c.vregoff(&p.To))
  4208  		zVRX(op, uint32(v1), uint32(p.To.Index), uint32(b2), d2, m3, asm)
  4209  
  4210  	case 101: // VRX LOAD
  4211  		op, m3, _ := vop(p.As)
  4212  		src := &p.From
  4213  		if p.GetFrom3() != nil {
  4214  			m3 = uint32(c.vregoff(&p.From))
  4215  			src = p.GetFrom3()
  4216  		}
  4217  		b2 := src.Reg
  4218  		if b2 == 0 {
  4219  			b2 = REGSP
  4220  		}
  4221  		d2 := uint32(c.vregoff(src))
  4222  		zVRX(op, uint32(p.To.Reg), uint32(src.Index), uint32(b2), d2, m3, asm)
  4223  
  4224  	case 102: // VRV SCATTER
  4225  		op, _, _ := vop(p.As)
  4226  		m3 := uint32(c.vregoff(&p.From))
  4227  		b2 := p.To.Reg
  4228  		if b2 == 0 {
  4229  			b2 = REGSP
  4230  		}
  4231  		d2 := uint32(c.vregoff(&p.To))
  4232  		zVRV(op, uint32(p.Reg), uint32(p.To.Index), uint32(b2), d2, m3, asm)
  4233  
  4234  	case 103: // VRV GATHER
  4235  		op, _, _ := vop(p.As)
  4236  		m3 := uint32(c.vregoff(&p.From))
  4237  		b2 := p.GetFrom3().Reg
  4238  		if b2 == 0 {
  4239  			b2 = REGSP
  4240  		}
  4241  		d2 := uint32(c.vregoff(p.GetFrom3()))
  4242  		zVRV(op, uint32(p.To.Reg), uint32(p.GetFrom3().Index), uint32(b2), d2, m3, asm)
  4243  
  4244  	case 104: // VRS SHIFT/ROTATE and LOAD GR FROM VR ELEMENT
  4245  		op, m4, _ := vop(p.As)
  4246  		fr := p.Reg
  4247  		if fr == 0 {
  4248  			fr = p.To.Reg
  4249  		}
  4250  		bits := uint32(c.vregoff(&p.From))
  4251  		zVRS(op, uint32(p.To.Reg), uint32(fr), uint32(p.From.Reg), bits, m4, asm)
  4252  
  4253  	case 105: // VRS STORE MULTIPLE
  4254  		op, _, _ := vop(p.As)
  4255  		offset := uint32(c.vregoff(&p.To))
  4256  		reg := p.To.Reg
  4257  		if reg == 0 {
  4258  			reg = REGSP
  4259  		}
  4260  		zVRS(op, uint32(p.From.Reg), uint32(p.Reg), uint32(reg), offset, 0, asm)
  4261  
  4262  	case 106: // VRS LOAD MULTIPLE
  4263  		op, _, _ := vop(p.As)
  4264  		offset := uint32(c.vregoff(&p.From))
  4265  		reg := p.From.Reg
  4266  		if reg == 0 {
  4267  			reg = REGSP
  4268  		}
  4269  		zVRS(op, uint32(p.Reg), uint32(p.To.Reg), uint32(reg), offset, 0, asm)
  4270  
  4271  	case 107: // VRS STORE WITH LENGTH
  4272  		op, _, _ := vop(p.As)
  4273  		offset := uint32(c.vregoff(&p.To))
  4274  		reg := p.To.Reg
  4275  		if reg == 0 {
  4276  			reg = REGSP
  4277  		}
  4278  		zVRS(op, uint32(p.Reg), uint32(p.From.Reg), uint32(reg), offset, 0, asm)
  4279  
  4280  	case 108: // VRS LOAD WITH LENGTH
  4281  		op, _, _ := vop(p.As)
  4282  		offset := uint32(c.vregoff(p.GetFrom3()))
  4283  		reg := p.GetFrom3().Reg
  4284  		if reg == 0 {
  4285  			reg = REGSP
  4286  		}
  4287  		zVRS(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(reg), offset, 0, asm)
  4288  
  4289  	case 109: // VRI-a
  4290  		op, m3, _ := vop(p.As)
  4291  		i2 := uint32(c.vregoff(&p.From))
  4292  		if p.GetFrom3() != nil {
  4293  			m3 = uint32(c.vregoff(&p.From))
  4294  			i2 = uint32(c.vregoff(p.GetFrom3()))
  4295  		}
  4296  		switch p.As {
  4297  		case AVZERO:
  4298  			i2 = 0
  4299  		case AVONE:
  4300  			i2 = 0xffff
  4301  		}
  4302  		zVRIa(op, uint32(p.To.Reg), i2, m3, asm)
  4303  
  4304  	case 110:
  4305  		op, m4, _ := vop(p.As)
  4306  		i2 := uint32(c.vregoff(&p.From))
  4307  		i3 := uint32(c.vregoff(p.GetFrom3()))
  4308  		zVRIb(op, uint32(p.To.Reg), i2, i3, m4, asm)
  4309  
  4310  	case 111:
  4311  		op, m4, _ := vop(p.As)
  4312  		i2 := uint32(c.vregoff(&p.From))
  4313  		zVRIc(op, uint32(p.To.Reg), uint32(p.Reg), i2, m4, asm)
  4314  
  4315  	case 112:
  4316  		op, m5, _ := vop(p.As)
  4317  		i4 := uint32(c.vregoff(&p.From))
  4318  		zVRId(op, uint32(p.To.Reg), uint32(p.Reg), uint32(p.GetFrom3().Reg), i4, m5, asm)
  4319  
  4320  	case 113:
  4321  		op, m4, _ := vop(p.As)
  4322  		m5 := singleElementMask(p.As)
  4323  		i3 := uint32(c.vregoff(&p.From))
  4324  		zVRIe(op, uint32(p.To.Reg), uint32(p.Reg), i3, m5, m4, asm)
  4325  
  4326  	case 114: // VRR-a
  4327  		op, m3, m5 := vop(p.As)
  4328  		m4 := singleElementMask(p.As)
  4329  		zVRRa(op, uint32(p.To.Reg), uint32(p.From.Reg), m5, m4, m3, asm)
  4330  
  4331  	case 115: // VRR-a COMPARE
  4332  		op, m3, m5 := vop(p.As)
  4333  		m4 := singleElementMask(p.As)
  4334  		zVRRa(op, uint32(p.From.Reg), uint32(p.To.Reg), m5, m4, m3, asm)
  4335  
  4336  	case 117: // VRR-b
  4337  		op, m4, m5 := vop(p.As)
  4338  		zVRRb(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), m5, m4, asm)
  4339  
  4340  	case 118: // VRR-c
  4341  		op, m4, m6 := vop(p.As)
  4342  		m5 := singleElementMask(p.As)
  4343  		v3 := p.Reg
  4344  		if v3 == 0 {
  4345  			v3 = p.To.Reg
  4346  		}
  4347  		zVRRc(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(v3), m6, m5, m4, asm)
  4348  
  4349  	case 119: // VRR-c SHIFT/ROTATE/DIVIDE/SUB (rhs value on the left, like SLD, DIV etc.)
  4350  		op, m4, m6 := vop(p.As)
  4351  		m5 := singleElementMask(p.As)
  4352  		v2 := p.Reg
  4353  		if v2 == 0 {
  4354  			v2 = p.To.Reg
  4355  		}
  4356  		zVRRc(op, uint32(p.To.Reg), uint32(v2), uint32(p.From.Reg), m6, m5, m4, asm)
  4357  
  4358  	case 120: // VRR-d
  4359  		op, m6, m5 := vop(p.As)
  4360  		v1 := uint32(p.To.Reg)
  4361  		v2 := uint32(p.From.Reg)
  4362  		v3 := uint32(p.Reg)
  4363  		v4 := uint32(p.GetFrom3().Reg)
  4364  		zVRRd(op, v1, v2, v3, m6, m5, v4, asm)
  4365  
  4366  	case 121: // VRR-e
  4367  		op, m6, _ := vop(p.As)
  4368  		m5 := singleElementMask(p.As)
  4369  		v1 := uint32(p.To.Reg)
  4370  		v2 := uint32(p.From.Reg)
  4371  		v3 := uint32(p.Reg)
  4372  		v4 := uint32(p.GetFrom3().Reg)
  4373  		zVRRe(op, v1, v2, v3, m6, m5, v4, asm)
  4374  
  4375  	case 122: // VRR-f LOAD VRS FROM GRS DISJOINT
  4376  		op, _, _ := vop(p.As)
  4377  		zVRRf(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), asm)
  4378  
  4379  	case 123: // VPDI $m4, V2, V3, V1
  4380  		op, _, _ := vop(p.As)
  4381  		m4 := c.regoff(&p.From)
  4382  		zVRRc(op, uint32(p.To.Reg), uint32(p.Reg), uint32(p.GetFrom3().Reg), 0, 0, uint32(m4), asm)
  4383  
  4384  	case 124:
  4385  		var opcode uint32
  4386  		switch p.As {
  4387  		default:
  4388  			c.ctxt.Diag("unexpected opcode %v", p.As)
  4389  		case AKM, AKMC, AKLMD:
  4390  			if p.From.Reg == REG_R0 {
  4391  				c.ctxt.Diag("input must not be R0 in %v", p)
  4392  			}
  4393  			if p.From.Reg&1 != 0 {
  4394  				c.ctxt.Diag("input must be even register in %v", p)
  4395  			}
  4396  			if p.To.Reg == REG_R0 {
  4397  				c.ctxt.Diag("second argument must not be R0 in %v", p)
  4398  			}
  4399  			if p.To.Reg&1 != 0 {
  4400  				c.ctxt.Diag("second argument must be even register in %v", p)
  4401  			}
  4402  			if p.As == AKM {
  4403  				opcode = op_KM
  4404  			} else if p.As == AKMC {
  4405  				opcode = op_KMC
  4406  			} else {
  4407  				opcode = op_KLMD
  4408  			}
  4409  		case AKIMD:
  4410  			if p.To.Reg == REG_R0 {
  4411  				c.ctxt.Diag("second argument must not be R0 in %v", p)
  4412  			}
  4413  			if p.To.Reg&1 != 0 {
  4414  				c.ctxt.Diag("second argument must be even register in %v", p)
  4415  			}
  4416  			opcode = op_KIMD
  4417  		}
  4418  		zRRE(opcode, uint32(p.From.Reg), uint32(p.To.Reg), asm)
  4419  
  4420  	case 125: // KDSA sign and verify
  4421  		if p.To.Reg == REG_R0 {
  4422  			c.ctxt.Diag("second argument must not be R0 in %v", p)
  4423  		}
  4424  		if p.To.Reg&1 != 0 {
  4425  			c.ctxt.Diag("second argument must be an even register in %v", p)
  4426  		}
  4427  		zRRE(op_KDSA, uint32(p.From.Reg), uint32(p.To.Reg), asm)
  4428  
  4429  	case 126: // KMA and KMCTR - CIPHER MESSAGE WITH AUTHENTICATION; CIPHER MESSAGE WITH COUNTER
  4430  		var opcode uint32
  4431  		switch p.As {
  4432  		default:
  4433  			c.ctxt.Diag("unexpected opcode %v", p.As)
  4434  		case AKMA, AKMCTR:
  4435  			if p.From.Reg == REG_R0 {
  4436  				c.ctxt.Diag("input argument must not be R0 in %v", p)
  4437  			}
  4438  			if p.From.Reg&1 != 0 {
  4439  				c.ctxt.Diag("input argument must be even register in %v", p)
  4440  			}
  4441  			if p.To.Reg == REG_R0 {
  4442  				c.ctxt.Diag("output argument must not be R0 in %v", p)
  4443  			}
  4444  			if p.To.Reg&1 != 0 {
  4445  				c.ctxt.Diag("output argument must be an even register in %v", p)
  4446  			}
  4447  			if p.Reg == REG_R0 {
  4448  				c.ctxt.Diag("third argument must not be R0 in %v", p)
  4449  			}
  4450  			if p.Reg&1 != 0 {
  4451  				c.ctxt.Diag("third argument must be even register in %v", p)
  4452  			}
  4453  			if p.As == AKMA {
  4454  				opcode = op_KMA
  4455  			} else if p.As == AKMCTR {
  4456  				opcode = op_KMCTR
  4457  			}
  4458  		}
  4459  		zRRF(opcode, uint32(p.Reg), 0, uint32(p.From.Reg), uint32(p.To.Reg), asm)
  4460  
  4461  	case 127:
  4462  		// NOTE: Mapping MVCLE operands is as follows:
  4463  		// Instruction Format: MVCLE R1,R3,D2(B2)
  4464  		// R1 - prog.To (for Destination)
  4465  		// R3 - prog.Reg (for Source)
  4466  		// B2 - prog.From (for Padding Byte)
  4467  		d2 := c.regoff(&p.From)
  4468  		if p.To.Reg&1 != 0 {
  4469  			c.ctxt.Diag("output argument must be even register in %v", p)
  4470  		}
  4471  		if p.Reg&1 != 0 {
  4472  			c.ctxt.Diag("input argument must be an even register in %v", p)
  4473  		}
  4474  		if (p.From.Reg == p.To.Reg) || (p.From.Reg == p.Reg) {
  4475  			c.ctxt.Diag("padding byte register cannot be same as input or output register %v", p)
  4476  		}
  4477  		zRS(op_MVCLE, uint32(p.To.Reg), uint32(p.Reg), uint32(p.From.Reg), uint32(d2), asm)
  4478  	}
  4479  }
  4480  
  4481  func (c *ctxtz) vregoff(a *obj.Addr) int64 {
  4482  	c.instoffset = 0
  4483  	if a != nil {
  4484  		c.aclass(a)
  4485  	}
  4486  	return c.instoffset
  4487  }
  4488  
  4489  func (c *ctxtz) regoff(a *obj.Addr) int32 {
  4490  	return int32(c.vregoff(a))
  4491  }
  4492  
  4493  // find if the displacement is within 12 bit.
  4494  func isU12(displacement int32) bool {
  4495  	return displacement >= 0 && displacement < DISP12
  4496  }
  4497  
  4498  // zopload12 returns the RX op with 12 bit displacement for the given load.
  4499  func (c *ctxtz) zopload12(a obj.As) (uint32, bool) {
  4500  	switch a {
  4501  	case AFMOVD:
  4502  		return op_LD, true
  4503  	case AFMOVS:
  4504  		return op_LE, true
  4505  	}
  4506  	return 0, false
  4507  }
  4508  
  4509  // zopload returns the RXY op for the given load.
  4510  func (c *ctxtz) zopload(a obj.As) uint32 {
  4511  	switch a {
  4512  	// fixed point load
  4513  	case AMOVD:
  4514  		return op_LG
  4515  	case AMOVW:
  4516  		return op_LGF
  4517  	case AMOVWZ:
  4518  		return op_LLGF
  4519  	case AMOVH:
  4520  		return op_LGH
  4521  	case AMOVHZ:
  4522  		return op_LLGH
  4523  	case AMOVB:
  4524  		return op_LGB
  4525  	case AMOVBZ:
  4526  		return op_LLGC
  4527  
  4528  	// floating point load
  4529  	case AFMOVD:
  4530  		return op_LDY
  4531  	case AFMOVS:
  4532  		return op_LEY
  4533  
  4534  	// byte reversed load
  4535  	case AMOVDBR:
  4536  		return op_LRVG
  4537  	case AMOVWBR:
  4538  		return op_LRV
  4539  	case AMOVHBR:
  4540  		return op_LRVH
  4541  	}
  4542  
  4543  	c.ctxt.Diag("unknown store opcode %v", a)
  4544  	return 0
  4545  }
  4546  
  4547  // zopstore12 returns the RX op with 12 bit displacement for the given store.
  4548  func (c *ctxtz) zopstore12(a obj.As) (uint32, bool) {
  4549  	switch a {
  4550  	case AFMOVD:
  4551  		return op_STD, true
  4552  	case AFMOVS:
  4553  		return op_STE, true
  4554  	case AMOVW, AMOVWZ:
  4555  		return op_ST, true
  4556  	case AMOVH, AMOVHZ:
  4557  		return op_STH, true
  4558  	case AMOVB, AMOVBZ:
  4559  		return op_STC, true
  4560  	}
  4561  	return 0, false
  4562  }
  4563  
  4564  // zopstore returns the RXY op for the given store.
  4565  func (c *ctxtz) zopstore(a obj.As) uint32 {
  4566  	switch a {
  4567  	// fixed point store
  4568  	case AMOVD:
  4569  		return op_STG
  4570  	case AMOVW, AMOVWZ:
  4571  		return op_STY
  4572  	case AMOVH, AMOVHZ:
  4573  		return op_STHY
  4574  	case AMOVB, AMOVBZ:
  4575  		return op_STCY
  4576  
  4577  	// floating point store
  4578  	case AFMOVD:
  4579  		return op_STDY
  4580  	case AFMOVS:
  4581  		return op_STEY
  4582  
  4583  	// byte reversed store
  4584  	case AMOVDBR:
  4585  		return op_STRVG
  4586  	case AMOVWBR:
  4587  		return op_STRV
  4588  	case AMOVHBR:
  4589  		return op_STRVH
  4590  	}
  4591  
  4592  	c.ctxt.Diag("unknown store opcode %v", a)
  4593  	return 0
  4594  }
  4595  
  4596  // zoprre returns the RRE op for the given a.
  4597  func (c *ctxtz) zoprre(a obj.As) uint32 {
  4598  	switch a {
  4599  	case ACMP:
  4600  		return op_CGR
  4601  	case ACMPU:
  4602  		return op_CLGR
  4603  	case AFCMPO: //ordered
  4604  		return op_KDBR
  4605  	case AFCMPU: //unordered
  4606  		return op_CDBR
  4607  	case ACEBR:
  4608  		return op_CEBR
  4609  	}
  4610  	c.ctxt.Diag("unknown rre opcode %v", a)
  4611  	return 0
  4612  }
  4613  
  4614  // zoprr returns the RR op for the given a.
  4615  func (c *ctxtz) zoprr(a obj.As) uint32 {
  4616  	switch a {
  4617  	case ACMPW:
  4618  		return op_CR
  4619  	case ACMPWU:
  4620  		return op_CLR
  4621  	}
  4622  	c.ctxt.Diag("unknown rr opcode %v", a)
  4623  	return 0
  4624  }
  4625  
  4626  // zopril returns the RIL op for the given a.
  4627  func (c *ctxtz) zopril(a obj.As) uint32 {
  4628  	switch a {
  4629  	case ACMP:
  4630  		return op_CGFI
  4631  	case ACMPU:
  4632  		return op_CLGFI
  4633  	case ACMPW:
  4634  		return op_CFI
  4635  	case ACMPWU:
  4636  		return op_CLFI
  4637  	}
  4638  	c.ctxt.Diag("unknown ril opcode %v", a)
  4639  	return 0
  4640  }
  4641  
  4642  // z instructions sizes
  4643  const (
  4644  	sizeE    = 2
  4645  	sizeI    = 2
  4646  	sizeIE   = 4
  4647  	sizeMII  = 6
  4648  	sizeRI   = 4
  4649  	sizeRI1  = 4
  4650  	sizeRI2  = 4
  4651  	sizeRI3  = 4
  4652  	sizeRIE  = 6
  4653  	sizeRIE1 = 6
  4654  	sizeRIE2 = 6
  4655  	sizeRIE3 = 6
  4656  	sizeRIE4 = 6
  4657  	sizeRIE5 = 6
  4658  	sizeRIE6 = 6
  4659  	sizeRIL  = 6
  4660  	sizeRIL1 = 6
  4661  	sizeRIL2 = 6
  4662  	sizeRIL3 = 6
  4663  	sizeRIS  = 6
  4664  	sizeRR   = 2
  4665  	sizeRRD  = 4
  4666  	sizeRRE  = 4
  4667  	sizeRRF  = 4
  4668  	sizeRRF1 = 4
  4669  	sizeRRF2 = 4
  4670  	sizeRRF3 = 4
  4671  	sizeRRF4 = 4
  4672  	sizeRRF5 = 4
  4673  	sizeRRR  = 2
  4674  	sizeRRS  = 6
  4675  	sizeRS   = 4
  4676  	sizeRS1  = 4
  4677  	sizeRS2  = 4
  4678  	sizeRSI  = 4
  4679  	sizeRSL  = 6
  4680  	sizeRSY  = 6
  4681  	sizeRSY1 = 6
  4682  	sizeRSY2 = 6
  4683  	sizeRX   = 4
  4684  	sizeRX1  = 4
  4685  	sizeRX2  = 4
  4686  	sizeRXE  = 6
  4687  	sizeRXF  = 6
  4688  	sizeRXY  = 6
  4689  	sizeRXY1 = 6
  4690  	sizeRXY2 = 6
  4691  	sizeS    = 4
  4692  	sizeSI   = 4
  4693  	sizeSIL  = 6
  4694  	sizeSIY  = 6
  4695  	sizeSMI  = 6
  4696  	sizeSS   = 6
  4697  	sizeSS1  = 6
  4698  	sizeSS2  = 6
  4699  	sizeSS3  = 6
  4700  	sizeSS4  = 6
  4701  	sizeSS5  = 6
  4702  	sizeSS6  = 6
  4703  	sizeSSE  = 6
  4704  	sizeSSF  = 6
  4705  )
  4706  
  4707  // instruction format variations
  4708  type form int
  4709  
  4710  const (
  4711  	_a form = iota
  4712  	_b
  4713  	_c
  4714  	_d
  4715  	_e
  4716  	_f
  4717  )
  4718  
  4719  func zE(op uint32, asm *[]byte) {
  4720  	*asm = append(*asm, uint8(op>>8), uint8(op))
  4721  }
  4722  
  4723  func zI(op, i1 uint32, asm *[]byte) {
  4724  	*asm = append(*asm, uint8(op>>8), uint8(i1))
  4725  }
  4726  
  4727  func zMII(op, m1, ri2, ri3 uint32, asm *[]byte) {
  4728  	*asm = append(*asm,
  4729  		uint8(op>>8),
  4730  		(uint8(m1)<<4)|uint8((ri2>>8)&0x0F),
  4731  		uint8(ri2),
  4732  		uint8(ri3>>16),
  4733  		uint8(ri3>>8),
  4734  		uint8(ri3))
  4735  }
  4736  
  4737  func zRI(op, r1_m1, i2_ri2 uint32, asm *[]byte) {
  4738  	*asm = append(*asm,
  4739  		uint8(op>>8),
  4740  		(uint8(r1_m1)<<4)|(uint8(op)&0x0F),
  4741  		uint8(i2_ri2>>8),
  4742  		uint8(i2_ri2))
  4743  }
  4744  
  4745  // Expected argument values for the instruction formats.
  4746  //
  4747  // Format    a1  a2   a3  a4  a5  a6  a7
  4748  // ------------------------------------
  4749  // a         r1,  0,  i2,  0,  0, m3,  0
  4750  // b         r1, r2, ri4,  0,  0, m3,  0
  4751  // c         r1, m3, ri4,  0,  0,  0, i2
  4752  // d         r1, r3,  i2,  0,  0,  0,  0
  4753  // e         r1, r3, ri2,  0,  0,  0,  0
  4754  // f         r1, r2,   0, i3, i4,  0, i5
  4755  // g         r1, m3,  i2,  0,  0,  0,  0
  4756  func zRIE(f form, op, r1, r2_m3_r3, i2_ri4_ri2, i3, i4, m3, i2_i5 uint32, asm *[]byte) {
  4757  	*asm = append(*asm, uint8(op>>8), uint8(r1)<<4|uint8(r2_m3_r3&0x0F))
  4758  
  4759  	switch f {
  4760  	default:
  4761  		*asm = append(*asm, uint8(i2_ri4_ri2>>8), uint8(i2_ri4_ri2))
  4762  	case _f:
  4763  		*asm = append(*asm, uint8(i3), uint8(i4))
  4764  	}
  4765  
  4766  	switch f {
  4767  	case _a, _b:
  4768  		*asm = append(*asm, uint8(m3)<<4)
  4769  	default:
  4770  		*asm = append(*asm, uint8(i2_i5))
  4771  	}
  4772  
  4773  	*asm = append(*asm, uint8(op))
  4774  }
  4775  
  4776  func zRIL(f form, op, r1_m1, i2_ri2 uint32, asm *[]byte) {
  4777  	if f == _a || f == _b {
  4778  		r1_m1 = r1_m1 - obj.RBaseS390X // this is a register base
  4779  	}
  4780  	*asm = append(*asm,
  4781  		uint8(op>>8),
  4782  		(uint8(r1_m1)<<4)|(uint8(op)&0x0F),
  4783  		uint8(i2_ri2>>24),
  4784  		uint8(i2_ri2>>16),
  4785  		uint8(i2_ri2>>8),
  4786  		uint8(i2_ri2))
  4787  }
  4788  
  4789  func zRIS(op, r1, m3, b4, d4, i2 uint32, asm *[]byte) {
  4790  	*asm = append(*asm,
  4791  		uint8(op>>8),
  4792  		(uint8(r1)<<4)|uint8(m3&0x0F),
  4793  		(uint8(b4)<<4)|(uint8(d4>>8)&0x0F),
  4794  		uint8(d4),
  4795  		uint8(i2),
  4796  		uint8(op))
  4797  }
  4798  
  4799  func zRR(op, r1, r2 uint32, asm *[]byte) {
  4800  	*asm = append(*asm, uint8(op>>8), (uint8(r1)<<4)|uint8(r2&0x0F))
  4801  }
  4802  
  4803  func zRRD(op, r1, r3, r2 uint32, asm *[]byte) {
  4804  	*asm = append(*asm,
  4805  		uint8(op>>8),
  4806  		uint8(op),
  4807  		uint8(r1)<<4,
  4808  		(uint8(r3)<<4)|uint8(r2&0x0F))
  4809  }
  4810  
  4811  func zRRE(op, r1, r2 uint32, asm *[]byte) {
  4812  	*asm = append(*asm,
  4813  		uint8(op>>8),
  4814  		uint8(op),
  4815  		0,
  4816  		(uint8(r1)<<4)|uint8(r2&0x0F))
  4817  }
  4818  
  4819  func zRRF(op, r3_m3, m4, r1, r2 uint32, asm *[]byte) {
  4820  	*asm = append(*asm,
  4821  		uint8(op>>8),
  4822  		uint8(op),
  4823  		(uint8(r3_m3)<<4)|uint8(m4&0x0F),
  4824  		(uint8(r1)<<4)|uint8(r2&0x0F))
  4825  }
  4826  
  4827  func zRRS(op, r1, r2, b4, d4, m3 uint32, asm *[]byte) {
  4828  	*asm = append(*asm,
  4829  		uint8(op>>8),
  4830  		(uint8(r1)<<4)|uint8(r2&0x0F),
  4831  		(uint8(b4)<<4)|uint8((d4>>8)&0x0F),
  4832  		uint8(d4),
  4833  		uint8(m3)<<4,
  4834  		uint8(op))
  4835  }
  4836  
  4837  func zRS(op, r1, r3_m3, b2, d2 uint32, asm *[]byte) {
  4838  	*asm = append(*asm,
  4839  		uint8(op>>8),
  4840  		(uint8(r1)<<4)|uint8(r3_m3&0x0F),
  4841  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4842  		uint8(d2))
  4843  }
  4844  
  4845  func zRSI(op, r1, r3, ri2 uint32, asm *[]byte) {
  4846  	*asm = append(*asm,
  4847  		uint8(op>>8),
  4848  		(uint8(r1)<<4)|uint8(r3&0x0F),
  4849  		uint8(ri2>>8),
  4850  		uint8(ri2))
  4851  }
  4852  
  4853  func zRSL(op, l1, b2, d2 uint32, asm *[]byte) {
  4854  	*asm = append(*asm,
  4855  		uint8(op>>8),
  4856  		uint8(l1),
  4857  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4858  		uint8(d2),
  4859  		uint8(op))
  4860  }
  4861  
  4862  func zRSY(op, r1, r3_m3, b2, d2 uint32, asm *[]byte) {
  4863  	dl2 := uint16(d2) & 0x0FFF
  4864  	*asm = append(*asm,
  4865  		uint8(op>>8),
  4866  		(uint8(r1)<<4)|uint8(r3_m3&0x0F),
  4867  		(uint8(b2)<<4)|(uint8(dl2>>8)&0x0F),
  4868  		uint8(dl2),
  4869  		uint8(d2>>12),
  4870  		uint8(op))
  4871  }
  4872  
  4873  func zRX(op, r1_m1, x2, b2, d2 uint32, asm *[]byte) {
  4874  	*asm = append(*asm,
  4875  		uint8(op>>8),
  4876  		(uint8(r1_m1)<<4)|uint8(x2&0x0F),
  4877  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4878  		uint8(d2))
  4879  }
  4880  
  4881  func zRXE(op, r1, x2, b2, d2, m3 uint32, asm *[]byte) {
  4882  	*asm = append(*asm,
  4883  		uint8(op>>8),
  4884  		(uint8(r1)<<4)|uint8(x2&0x0F),
  4885  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4886  		uint8(d2),
  4887  		uint8(m3)<<4,
  4888  		uint8(op))
  4889  }
  4890  
  4891  func zRXF(op, r3, x2, b2, d2, m1 uint32, asm *[]byte) {
  4892  	*asm = append(*asm,
  4893  		uint8(op>>8),
  4894  		(uint8(r3)<<4)|uint8(x2&0x0F),
  4895  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4896  		uint8(d2),
  4897  		uint8(m1)<<4,
  4898  		uint8(op))
  4899  }
  4900  
  4901  func zRXY(op, r1_m1, x2, b2, d2 uint32, asm *[]byte) {
  4902  	dl2 := uint16(d2) & 0x0FFF
  4903  	*asm = append(*asm,
  4904  		uint8(op>>8),
  4905  		(uint8(r1_m1)<<4)|uint8(x2&0x0F),
  4906  		(uint8(b2)<<4)|(uint8(dl2>>8)&0x0F),
  4907  		uint8(dl2),
  4908  		uint8(d2>>12),
  4909  		uint8(op))
  4910  }
  4911  
  4912  func zS(op, b2, d2 uint32, asm *[]byte) {
  4913  	*asm = append(*asm,
  4914  		uint8(op>>8),
  4915  		uint8(op),
  4916  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4917  		uint8(d2))
  4918  }
  4919  
  4920  func zSI(op, i2, b1, d1 uint32, asm *[]byte) {
  4921  	*asm = append(*asm,
  4922  		uint8(op>>8),
  4923  		uint8(i2),
  4924  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4925  		uint8(d1))
  4926  }
  4927  
  4928  func zSIL(op, b1, d1, i2 uint32, asm *[]byte) {
  4929  	*asm = append(*asm,
  4930  		uint8(op>>8),
  4931  		uint8(op),
  4932  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4933  		uint8(d1),
  4934  		uint8(i2>>8),
  4935  		uint8(i2))
  4936  }
  4937  
  4938  func zSIY(op, i2, b1, d1 uint32, asm *[]byte) {
  4939  	dl1 := uint16(d1) & 0x0FFF
  4940  	*asm = append(*asm,
  4941  		uint8(op>>8),
  4942  		uint8(i2),
  4943  		(uint8(b1)<<4)|(uint8(dl1>>8)&0x0F),
  4944  		uint8(dl1),
  4945  		uint8(d1>>12),
  4946  		uint8(op))
  4947  }
  4948  
  4949  func zSMI(op, m1, b3, d3, ri2 uint32, asm *[]byte) {
  4950  	*asm = append(*asm,
  4951  		uint8(op>>8),
  4952  		uint8(m1)<<4,
  4953  		(uint8(b3)<<4)|uint8((d3>>8)&0x0F),
  4954  		uint8(d3),
  4955  		uint8(ri2>>8),
  4956  		uint8(ri2))
  4957  }
  4958  
  4959  // Expected argument values for the instruction formats.
  4960  //
  4961  // Format    a1  a2  a3  a4  a5  a6
  4962  // -------------------------------
  4963  // a         l1,  0, b1, d1, b2, d2
  4964  // b         l1, l2, b1, d1, b2, d2
  4965  // c         l1, i3, b1, d1, b2, d2
  4966  // d         r1, r3, b1, d1, b2, d2
  4967  // e         r1, r3, b2, d2, b4, d4
  4968  // f          0, l2, b1, d1, b2, d2
  4969  func zSS(f form, op, l1_r1, l2_i3_r3, b1_b2, d1_d2, b2_b4, d2_d4 uint32, asm *[]byte) {
  4970  	*asm = append(*asm, uint8(op>>8))
  4971  
  4972  	switch f {
  4973  	case _a:
  4974  		*asm = append(*asm, uint8(l1_r1))
  4975  	case _b, _c, _d, _e:
  4976  		*asm = append(*asm, (uint8(l1_r1)<<4)|uint8(l2_i3_r3&0x0F))
  4977  	case _f:
  4978  		*asm = append(*asm, uint8(l2_i3_r3))
  4979  	}
  4980  
  4981  	*asm = append(*asm,
  4982  		(uint8(b1_b2)<<4)|uint8((d1_d2>>8)&0x0F),
  4983  		uint8(d1_d2),
  4984  		(uint8(b2_b4)<<4)|uint8((d2_d4>>8)&0x0F),
  4985  		uint8(d2_d4))
  4986  }
  4987  
  4988  func zSSE(op, b1, d1, b2, d2 uint32, asm *[]byte) {
  4989  	*asm = append(*asm,
  4990  		uint8(op>>8),
  4991  		uint8(op),
  4992  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4993  		uint8(d1),
  4994  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4995  		uint8(d2))
  4996  }
  4997  
  4998  func zSSF(op, r3, b1, d1, b2, d2 uint32, asm *[]byte) {
  4999  	*asm = append(*asm,
  5000  		uint8(op>>8),
  5001  		(uint8(r3)<<4)|(uint8(op)&0x0F),
  5002  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  5003  		uint8(d1),
  5004  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  5005  		uint8(d2))
  5006  }
  5007  
  5008  func rxb(va, vb, vc, vd uint32) uint8 {
  5009  	mask := uint8(0)
  5010  	if va >= REG_V16 && va <= REG_V31 {
  5011  		mask |= 0x8
  5012  	}
  5013  	if vb >= REG_V16 && vb <= REG_V31 {
  5014  		mask |= 0x4
  5015  	}
  5016  	if vc >= REG_V16 && vc <= REG_V31 {
  5017  		mask |= 0x2
  5018  	}
  5019  	if vd >= REG_V16 && vd <= REG_V31 {
  5020  		mask |= 0x1
  5021  	}
  5022  	return mask
  5023  }
  5024  
  5025  func zVRX(op, v1, x2, b2, d2, m3 uint32, asm *[]byte) {
  5026  	*asm = append(*asm,
  5027  		uint8(op>>8),
  5028  		(uint8(v1)<<4)|(uint8(x2)&0xf),
  5029  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  5030  		uint8(d2),
  5031  		(uint8(m3)<<4)|rxb(v1, 0, 0, 0),
  5032  		uint8(op))
  5033  }
  5034  
  5035  func zVRV(op, v1, v2, b2, d2, m3 uint32, asm *[]byte) {
  5036  	*asm = append(*asm,
  5037  		uint8(op>>8),
  5038  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  5039  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  5040  		uint8(d2),
  5041  		(uint8(m3)<<4)|rxb(v1, v2, 0, 0),
  5042  		uint8(op))
  5043  }
  5044  
  5045  func zVRS(op, v1, v3_r3, b2, d2, m4 uint32, asm *[]byte) {
  5046  	*asm = append(*asm,
  5047  		uint8(op>>8),
  5048  		(uint8(v1)<<4)|(uint8(v3_r3)&0xf),
  5049  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  5050  		uint8(d2),
  5051  		(uint8(m4)<<4)|rxb(v1, v3_r3, 0, 0),
  5052  		uint8(op))
  5053  }
  5054  
  5055  func zVRRa(op, v1, v2, m5, m4, m3 uint32, asm *[]byte) {
  5056  	*asm = append(*asm,
  5057  		uint8(op>>8),
  5058  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  5059  		0,
  5060  		(uint8(m5)<<4)|(uint8(m4)&0xf),
  5061  		(uint8(m3)<<4)|rxb(v1, v2, 0, 0),
  5062  		uint8(op))
  5063  }
  5064  
  5065  func zVRRb(op, v1, v2, v3, m5, m4 uint32, asm *[]byte) {
  5066  	*asm = append(*asm,
  5067  		uint8(op>>8),
  5068  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  5069  		uint8(v3)<<4,
  5070  		uint8(m5)<<4,
  5071  		(uint8(m4)<<4)|rxb(v1, v2, v3, 0),
  5072  		uint8(op))
  5073  }
  5074  
  5075  func zVRRc(op, v1, v2, v3, m6, m5, m4 uint32, asm *[]byte) {
  5076  	*asm = append(*asm,
  5077  		uint8(op>>8),
  5078  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  5079  		uint8(v3)<<4,
  5080  		(uint8(m6)<<4)|(uint8(m5)&0xf),
  5081  		(uint8(m4)<<4)|rxb(v1, v2, v3, 0),
  5082  		uint8(op))
  5083  }
  5084  
  5085  func zVRRd(op, v1, v2, v3, m5, m6, v4 uint32, asm *[]byte) {
  5086  	*asm = append(*asm,
  5087  		uint8(op>>8),
  5088  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  5089  		(uint8(v3)<<4)|(uint8(m5)&0xf),
  5090  		uint8(m6)<<4,
  5091  		(uint8(v4)<<4)|rxb(v1, v2, v3, v4),
  5092  		uint8(op))
  5093  }
  5094  
  5095  func zVRRe(op, v1, v2, v3, m6, m5, v4 uint32, asm *[]byte) {
  5096  	*asm = append(*asm,
  5097  		uint8(op>>8),
  5098  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  5099  		(uint8(v3)<<4)|(uint8(m6)&0xf),
  5100  		uint8(m5),
  5101  		(uint8(v4)<<4)|rxb(v1, v2, v3, v4),
  5102  		uint8(op))
  5103  }
  5104  
  5105  func zVRRf(op, v1, r2, r3 uint32, asm *[]byte) {
  5106  	*asm = append(*asm,
  5107  		uint8(op>>8),
  5108  		(uint8(v1)<<4)|(uint8(r2)&0xf),
  5109  		uint8(r3)<<4,
  5110  		0,
  5111  		rxb(v1, 0, 0, 0),
  5112  		uint8(op))
  5113  }
  5114  
  5115  func zVRIa(op, v1, i2, m3 uint32, asm *[]byte) {
  5116  	*asm = append(*asm,
  5117  		uint8(op>>8),
  5118  		uint8(v1)<<4,
  5119  		uint8(i2>>8),
  5120  		uint8(i2),
  5121  		(uint8(m3)<<4)|rxb(v1, 0, 0, 0),
  5122  		uint8(op))
  5123  }
  5124  
  5125  func zVRIb(op, v1, i2, i3, m4 uint32, asm *[]byte) {
  5126  	*asm = append(*asm,
  5127  		uint8(op>>8),
  5128  		uint8(v1)<<4,
  5129  		uint8(i2),
  5130  		uint8(i3),
  5131  		(uint8(m4)<<4)|rxb(v1, 0, 0, 0),
  5132  		uint8(op))
  5133  }
  5134  
  5135  func zVRIc(op, v1, v3, i2, m4 uint32, asm *[]byte) {
  5136  	*asm = append(*asm,
  5137  		uint8(op>>8),
  5138  		(uint8(v1)<<4)|(uint8(v3)&0xf),
  5139  		uint8(i2>>8),
  5140  		uint8(i2),
  5141  		(uint8(m4)<<4)|rxb(v1, v3, 0, 0),
  5142  		uint8(op))
  5143  }
  5144  
  5145  func zVRId(op, v1, v2, v3, i4, m5 uint32, asm *[]byte) {
  5146  	*asm = append(*asm,
  5147  		uint8(op>>8),
  5148  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  5149  		uint8(v3)<<4,
  5150  		uint8(i4),
  5151  		(uint8(m5)<<4)|rxb(v1, v2, v3, 0),
  5152  		uint8(op))
  5153  }
  5154  
  5155  func zVRIe(op, v1, v2, i3, m5, m4 uint32, asm *[]byte) {
  5156  	*asm = append(*asm,
  5157  		uint8(op>>8),
  5158  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  5159  		uint8(i3>>4),
  5160  		(uint8(i3)<<4)|(uint8(m5)&0xf),
  5161  		(uint8(m4)<<4)|rxb(v1, v2, 0, 0),
  5162  		uint8(op))
  5163  }
  5164  

View as plain text