1 // Copyright 2015 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 // Simplifications that apply to all backend architectures. As an example, this
6 // Go source code
7 //
8 // y := 0 * x
9 //
10 // can be translated into y := 0 without losing any information, which saves a
11 // pointless multiplication instruction. Other .rules files in this directory
12 // (for example AMD64.rules) contain rules specific to the architecture in the
13 // filename. The rules here apply to every architecture.
14 //
15 // The code for parsing this file lives in rulegen.go; this file generates
16 // ssa/rewritegeneric.go.
17
18 // values are specified using the following format:
19 // (op <type> [auxint] {aux} arg0 arg1 ...)
20 // the type, aux, and auxint fields are optional
21 // on the matching side
22 // - the type, aux, and auxint fields must match if they are specified.
23 // - the first occurrence of a variable defines that variable. Subsequent
24 // uses must match (be == to) the first use.
25 // - v is defined to be the value matched.
26 // - an additional conditional can be provided after the match pattern with "&&".
27 // on the generated side
28 // - the type of the top-level expression is the same as the one on the left-hand side.
29 // - the type of any subexpressions must be specified explicitly (or
30 // be specified in the op's type field).
31 // - auxint will be 0 if not specified.
32 // - aux will be nil if not specified.
33
34 // blocks are specified using the following format:
35 // (kind controlvalue succ0 succ1 ...)
36 // controlvalue must be "nil" or a value expression
37 // succ* fields must be variables
38 // For now, the generated successors must be a permutation of the matched successors.
39
40 // constant folding
41 (Trunc16to8 (Const16 [c])) => (Const8 [int8(c)])
42 (Trunc32to8 (Const32 [c])) => (Const8 [int8(c)])
43 (Trunc32to16 (Const32 [c])) => (Const16 [int16(c)])
44 (Trunc64to8 (Const64 [c])) => (Const8 [int8(c)])
45 (Trunc64to16 (Const64 [c])) => (Const16 [int16(c)])
46 (Trunc64to32 (Const64 [c])) => (Const32 [int32(c)])
47 (Cvt64Fto32F (Const64F [c])) => (Const32F [float32(c)])
48 (Cvt32Fto64F (Const32F [c])) => (Const64F [float64(c)])
49 (Cvt32to32F (Const32 [c])) => (Const32F [float32(c)])
50 (Cvt32to64F (Const32 [c])) => (Const64F [float64(c)])
51 (Cvt64to32F (Const64 [c])) => (Const32F [float32(c)])
52 (Cvt64to64F (Const64 [c])) => (Const64F [float64(c)])
53 (Cvt32Fto32 (Const32F [c])) => (Const32 [int32(c)])
54 (Cvt32Fto64 (Const32F [c])) => (Const64 [int64(c)])
55 (Cvt64Fto32 (Const64F [c])) => (Const32 [int32(c)])
56 (Cvt64Fto64 (Const64F [c])) => (Const64 [int64(c)])
57 (Round32F x:(Const32F)) => x
58 (Round64F x:(Const64F)) => x
59 (CvtBoolToUint8 (ConstBool [false])) => (Const8 [0])
60 (CvtBoolToUint8 (ConstBool [true])) => (Const8 [1])
61 (BitLen64 (Const64 [c])) && config.PtrSize == 8 => (Const64 [int64(bits.Len64(uint64(c)))])
62 (BitLen32 (Const32 [c])) && config.PtrSize == 8 => (Const64 [int64(bits.Len32(uint32(c)))])
63 (BitLen16 (Const16 [c])) && config.PtrSize == 8 => (Const64 [int64(bits.Len16(uint16(c)))])
64 (BitLen8 (Const8 [c])) && config.PtrSize == 8 => (Const64 [int64(bits.Len8(uint8(c)))])
65 (BitLen64 (Const64 [c])) && config.PtrSize == 4 => (Const32 [int32(bits.Len64(uint64(c)))])
66 (BitLen32 (Const32 [c])) && config.PtrSize == 4 => (Const32 [int32(bits.Len32(uint32(c)))])
67 (BitLen16 (Const16 [c])) && config.PtrSize == 4 => (Const32 [int32(bits.Len16(uint16(c)))])
68 (BitLen8 (Const8 [c])) && config.PtrSize == 4 => (Const32 [int32(bits.Len8(uint8(c)))])
69 (PopCount64 (Const64 [c])) && config.PtrSize == 8 => (Const64 [int64(bits.OnesCount64(uint64(c)))])
70 (PopCount32 (Const32 [c])) && config.PtrSize == 8 => (Const64 [int64(bits.OnesCount32(uint32(c)))])
71 (PopCount16 (Const16 [c])) && config.PtrSize == 8 => (Const64 [int64(bits.OnesCount16(uint16(c)))])
72 (PopCount8 (Const8 [c])) && config.PtrSize == 8 => (Const64 [int64(bits.OnesCount8(uint8(c)))])
73 (PopCount64 (Const64 [c])) && config.PtrSize == 4 => (Const32 [int32(bits.OnesCount64(uint64(c)))])
74 (PopCount32 (Const32 [c])) && config.PtrSize == 4 => (Const32 [int32(bits.OnesCount32(uint32(c)))])
75 (PopCount16 (Const16 [c])) && config.PtrSize == 4 => (Const32 [int32(bits.OnesCount16(uint16(c)))])
76 (PopCount8 (Const8 [c])) && config.PtrSize == 4 => (Const32 [int32(bits.OnesCount8(uint8(c)))])
77 (Add64carry (Const64 <t> [x]) (Const64 [y]) (Const64 [c])) && c >= 0 && c <= 1 => (MakeTuple (Const64 <t> [bitsAdd64(x, y, c).sum]) (Const64 <t> [bitsAdd64(x, y, c).carry]))
78
79 (Trunc16to8 (ZeroExt8to16 x)) => x
80 (Trunc32to8 (ZeroExt8to32 x)) => x
81 (Trunc32to16 (ZeroExt8to32 x)) => (ZeroExt8to16 x)
82 (Trunc32to16 (ZeroExt16to32 x)) => x
83 (Trunc64to8 (ZeroExt8to64 x)) => x
84 (Trunc64to16 (ZeroExt8to64 x)) => (ZeroExt8to16 x)
85 (Trunc64to16 (ZeroExt16to64 x)) => x
86 (Trunc64to32 (ZeroExt8to64 x)) => (ZeroExt8to32 x)
87 (Trunc64to32 (ZeroExt16to64 x)) => (ZeroExt16to32 x)
88 (Trunc64to32 (ZeroExt32to64 x)) => x
89 (Trunc16to8 (SignExt8to16 x)) => x
90 (Trunc32to8 (SignExt8to32 x)) => x
91 (Trunc32to16 (SignExt8to32 x)) => (SignExt8to16 x)
92 (Trunc32to16 (SignExt16to32 x)) => x
93 (Trunc64to8 (SignExt8to64 x)) => x
94 (Trunc64to16 (SignExt8to64 x)) => (SignExt8to16 x)
95 (Trunc64to16 (SignExt16to64 x)) => x
96 (Trunc64to32 (SignExt8to64 x)) => (SignExt8to32 x)
97 (Trunc64to32 (SignExt16to64 x)) => (SignExt16to32 x)
98 (Trunc64to32 (SignExt32to64 x)) => x
99
100 (ZeroExt8to16 (Const8 [c])) => (Const16 [int16( uint8(c))])
101 (ZeroExt8to32 (Const8 [c])) => (Const32 [int32( uint8(c))])
102 (ZeroExt8to64 (Const8 [c])) => (Const64 [int64( uint8(c))])
103 (ZeroExt16to32 (Const16 [c])) => (Const32 [int32(uint16(c))])
104 (ZeroExt16to64 (Const16 [c])) => (Const64 [int64(uint16(c))])
105 (ZeroExt32to64 (Const32 [c])) => (Const64 [int64(uint32(c))])
106 (SignExt8to16 (Const8 [c])) => (Const16 [int16(c)])
107 (SignExt8to32 (Const8 [c])) => (Const32 [int32(c)])
108 (SignExt8to64 (Const8 [c])) => (Const64 [int64(c)])
109 (SignExt16to32 (Const16 [c])) => (Const32 [int32(c)])
110 (SignExt16to64 (Const16 [c])) => (Const64 [int64(c)])
111 (SignExt32to64 (Const32 [c])) => (Const64 [int64(c)])
112
113 (Neg8 (Const8 [c])) => (Const8 [-c])
114 (Neg16 (Const16 [c])) => (Const16 [-c])
115 (Neg32 (Const32 [c])) => (Const32 [-c])
116 (Neg64 (Const64 [c])) => (Const64 [-c])
117 (Neg32F (Const32F [c])) && c != 0 => (Const32F [-c])
118 (Neg64F (Const64F [c])) && c != 0 => (Const64F [-c])
119
120 (Add8 (Const8 [c]) (Const8 [d])) => (Const8 [c+d])
121 (Add16 (Const16 [c]) (Const16 [d])) => (Const16 [c+d])
122 (Add32 (Const32 [c]) (Const32 [d])) => (Const32 [c+d])
123 (Add64 (Const64 [c]) (Const64 [d])) => (Const64 [c+d])
124 (Add32F (Const32F [c]) (Const32F [d])) && c+d == c+d => (Const32F [c+d])
125 (Add64F (Const64F [c]) (Const64F [d])) && c+d == c+d => (Const64F [c+d])
126 (AddPtr <t> x (Const64 [c])) => (OffPtr <t> x [c])
127 (AddPtr <t> x (Const32 [c])) => (OffPtr <t> x [int64(c)])
128
129 (Sub8 (Const8 [c]) (Const8 [d])) => (Const8 [c-d])
130 (Sub16 (Const16 [c]) (Const16 [d])) => (Const16 [c-d])
131 (Sub32 (Const32 [c]) (Const32 [d])) => (Const32 [c-d])
132 (Sub64 (Const64 [c]) (Const64 [d])) => (Const64 [c-d])
133 (Sub32F (Const32F [c]) (Const32F [d])) && c-d == c-d => (Const32F [c-d])
134 (Sub64F (Const64F [c]) (Const64F [d])) && c-d == c-d => (Const64F [c-d])
135
136 (Mul8 (Const8 [c]) (Const8 [d])) => (Const8 [c*d])
137 (Mul16 (Const16 [c]) (Const16 [d])) => (Const16 [c*d])
138 (Mul32 (Const32 [c]) (Const32 [d])) => (Const32 [c*d])
139 (Mul64 (Const64 [c]) (Const64 [d])) => (Const64 [c*d])
140 (Mul32F (Const32F [c]) (Const32F [d])) && c*d == c*d => (Const32F [c*d])
141 (Mul64F (Const64F [c]) (Const64F [d])) && c*d == c*d => (Const64F [c*d])
142 (Mul32uhilo (Const32 [c]) (Const32 [d])) => (MakeTuple (Const32 <typ.UInt32> [bitsMulU32(c, d).hi]) (Const32 <typ.UInt32> [bitsMulU32(c,d).lo]))
143 (Mul64uhilo (Const64 [c]) (Const64 [d])) => (MakeTuple (Const64 <typ.UInt64> [bitsMulU64(c, d).hi]) (Const64 <typ.UInt64> [bitsMulU64(c,d).lo]))
144 (Mul32uover (Const32 [c]) (Const32 [d])) => (MakeTuple (Const32 <typ.UInt32> [bitsMulU32(c, d).lo]) (ConstBool <typ.Bool> [bitsMulU32(c,d).hi != 0]))
145 (Mul64uover (Const64 [c]) (Const64 [d])) => (MakeTuple (Const64 <typ.UInt64> [bitsMulU64(c, d).lo]) (ConstBool <typ.Bool> [bitsMulU64(c,d).hi != 0]))
146
147 (And8 (Const8 [c]) (Const8 [d])) => (Const8 [c&d])
148 (And16 (Const16 [c]) (Const16 [d])) => (Const16 [c&d])
149 (And32 (Const32 [c]) (Const32 [d])) => (Const32 [c&d])
150 (And64 (Const64 [c]) (Const64 [d])) => (Const64 [c&d])
151
152 (Or8 (Const8 [c]) (Const8 [d])) => (Const8 [c|d])
153 (Or16 (Const16 [c]) (Const16 [d])) => (Const16 [c|d])
154 (Or32 (Const32 [c]) (Const32 [d])) => (Const32 [c|d])
155 (Or64 (Const64 [c]) (Const64 [d])) => (Const64 [c|d])
156
157 (Xor8 (Const8 [c]) (Const8 [d])) => (Const8 [c^d])
158 (Xor16 (Const16 [c]) (Const16 [d])) => (Const16 [c^d])
159 (Xor32 (Const32 [c]) (Const32 [d])) => (Const32 [c^d])
160 (Xor64 (Const64 [c]) (Const64 [d])) => (Const64 [c^d])
161
162 (Ctz64 (Const64 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz64(c))])
163 (Ctz32 (Const32 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz32(c))])
164 (Ctz16 (Const16 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz16(c))])
165 (Ctz8 (Const8 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz8(c))])
166
167 (Ctz64 (Const64 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz64(c))])
168 (Ctz32 (Const32 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz32(c))])
169 (Ctz16 (Const16 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz16(c))])
170 (Ctz8 (Const8 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz8(c))])
171
172 (Div8 (Const8 [c]) (Const8 [d])) && d != 0 => (Const8 [c/d])
173 (Div16 (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [c/d])
174 (Div32 (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [c/d])
175 (Div64 (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [c/d])
176 (Div8u (Const8 [c]) (Const8 [d])) && d != 0 => (Const8 [int8(uint8(c)/uint8(d))])
177 (Div16u (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [int16(uint16(c)/uint16(d))])
178 (Div32u (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [int32(uint32(c)/uint32(d))])
179 (Div64u (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [int64(uint64(c)/uint64(d))])
180 (Div32F (Const32F [c]) (Const32F [d])) && c/d == c/d => (Const32F [c/d])
181 (Div64F (Const64F [c]) (Const64F [d])) && c/d == c/d => (Const64F [c/d])
182 (Div128u <t> (Const64 [0]) lo y) => (MakeTuple (Div64u <t.FieldType(0)> lo y) (Mod64u <t.FieldType(1)> lo y))
183
184 (Not (ConstBool [c])) => (ConstBool [!c])
185
186 (Floor (Const64F [c])) => (Const64F [math.Floor(c)])
187 (Ceil (Const64F [c])) => (Const64F [math.Ceil(c)])
188 (Trunc (Const64F [c])) => (Const64F [math.Trunc(c)])
189 (RoundToEven (Const64F [c])) => (Const64F [math.RoundToEven(c)])
190
191 // Convert x * 1 to x.
192 (Mul(8|16|32|64) (Const(8|16|32|64) [1]) x) => x
193 (Mul(32|64)uover <t> (Const(32|64) [1]) x) => (MakeTuple x (ConstBool <t.FieldType(1)> [false]))
194
195 // Convert x * -1 to -x.
196 (Mul(8|16|32|64) (Const(8|16|32|64) [-1]) x) => (Neg(8|16|32|64) x)
197
198 // DeMorgan's Laws
199 (And(8|16|32|64) <t> (Com(8|16|32|64) x) (Com(8|16|32|64) y)) => (Com(8|16|32|64) (Or(8|16|32|64) <t> x y))
200 (Or(8|16|32|64) <t> (Com(8|16|32|64) x) (Com(8|16|32|64) y)) => (Com(8|16|32|64) (And(8|16|32|64) <t> x y))
201
202 // Convert multiplication by a power of two to a shift.
203 (Mul8 <t> n (Const8 [c])) && isPowerOfTwo(c) => (Lsh8x64 <t> n (Const64 <typ.UInt64> [log8(c)]))
204 (Mul16 <t> n (Const16 [c])) && isPowerOfTwo(c) => (Lsh16x64 <t> n (Const64 <typ.UInt64> [log16(c)]))
205 (Mul32 <t> n (Const32 [c])) && isPowerOfTwo(c) => (Lsh32x64 <t> n (Const64 <typ.UInt64> [log32(c)]))
206 (Mul64 <t> n (Const64 [c])) && isPowerOfTwo(c) => (Lsh64x64 <t> n (Const64 <typ.UInt64> [log64(c)]))
207 (Mul8 <t> n (Const8 [c])) && t.IsSigned() && isPowerOfTwo(-c) => (Neg8 (Lsh8x64 <t> n (Const64 <typ.UInt64> [log8(-c)])))
208 (Mul16 <t> n (Const16 [c])) && t.IsSigned() && isPowerOfTwo(-c) => (Neg16 (Lsh16x64 <t> n (Const64 <typ.UInt64> [log16(-c)])))
209 (Mul32 <t> n (Const32 [c])) && t.IsSigned() && isPowerOfTwo(-c) => (Neg32 (Lsh32x64 <t> n (Const64 <typ.UInt64> [log32(-c)])))
210 (Mul64 <t> n (Const64 [c])) && t.IsSigned() && isPowerOfTwo(-c) => (Neg64 (Lsh64x64 <t> n (Const64 <typ.UInt64> [log64(-c)])))
211
212 (Mod8 (Const8 [c]) (Const8 [d])) && d != 0 => (Const8 [c % d])
213 (Mod16 (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [c % d])
214 (Mod32 (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [c % d])
215 (Mod64 (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [c % d])
216
217 (Mod8u (Const8 [c]) (Const8 [d])) && d != 0 => (Const8 [int8(uint8(c) % uint8(d))])
218 (Mod16u (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [int16(uint16(c) % uint16(d))])
219 (Mod32u (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [int32(uint32(c) % uint32(d))])
220 (Mod64u (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [int64(uint64(c) % uint64(d))])
221
222 (Lsh64x64 (Const64 [c]) (Const64 [d])) => (Const64 [c << uint64(d)])
223 (Rsh64x64 (Const64 [c]) (Const64 [d])) => (Const64 [c >> uint64(d)])
224 (Rsh64Ux64 (Const64 [c]) (Const64 [d])) => (Const64 [int64(uint64(c) >> uint64(d))])
225 (Lsh32x64 (Const32 [c]) (Const64 [d])) => (Const32 [c << uint64(d)])
226 (Rsh32x64 (Const32 [c]) (Const64 [d])) => (Const32 [c >> uint64(d)])
227 (Rsh32Ux64 (Const32 [c]) (Const64 [d])) => (Const32 [int32(uint32(c) >> uint64(d))])
228 (Lsh16x64 (Const16 [c]) (Const64 [d])) => (Const16 [c << uint64(d)])
229 (Rsh16x64 (Const16 [c]) (Const64 [d])) => (Const16 [c >> uint64(d)])
230 (Rsh16Ux64 (Const16 [c]) (Const64 [d])) => (Const16 [int16(uint16(c) >> uint64(d))])
231 (Lsh8x64 (Const8 [c]) (Const64 [d])) => (Const8 [c << uint64(d)])
232 (Rsh8x64 (Const8 [c]) (Const64 [d])) => (Const8 [c >> uint64(d)])
233 (Rsh8Ux64 (Const8 [c]) (Const64 [d])) => (Const8 [int8(uint8(c) >> uint64(d))])
234
235 // Fold IsInBounds when the range of the index cannot exceed the limit.
236 (IsInBounds (ZeroExt8to32 _) (Const32 [c])) && (1 << 8) <= c => (ConstBool [true])
237 (IsInBounds (ZeroExt8to64 _) (Const64 [c])) && (1 << 8) <= c => (ConstBool [true])
238 (IsInBounds (ZeroExt16to32 _) (Const32 [c])) && (1 << 16) <= c => (ConstBool [true])
239 (IsInBounds (ZeroExt16to64 _) (Const64 [c])) && (1 << 16) <= c => (ConstBool [true])
240 (IsInBounds x x) => (ConstBool [false])
241 (IsInBounds (And8 (Const8 [c]) _) (Const8 [d])) && 0 <= c && c < d => (ConstBool [true])
242 (IsInBounds (ZeroExt8to16 (And8 (Const8 [c]) _)) (Const16 [d])) && 0 <= c && int16(c) < d => (ConstBool [true])
243 (IsInBounds (ZeroExt8to32 (And8 (Const8 [c]) _)) (Const32 [d])) && 0 <= c && int32(c) < d => (ConstBool [true])
244 (IsInBounds (ZeroExt8to64 (And8 (Const8 [c]) _)) (Const64 [d])) && 0 <= c && int64(c) < d => (ConstBool [true])
245 (IsInBounds (And16 (Const16 [c]) _) (Const16 [d])) && 0 <= c && c < d => (ConstBool [true])
246 (IsInBounds (ZeroExt16to32 (And16 (Const16 [c]) _)) (Const32 [d])) && 0 <= c && int32(c) < d => (ConstBool [true])
247 (IsInBounds (ZeroExt16to64 (And16 (Const16 [c]) _)) (Const64 [d])) && 0 <= c && int64(c) < d => (ConstBool [true])
248 (IsInBounds (And32 (Const32 [c]) _) (Const32 [d])) && 0 <= c && c < d => (ConstBool [true])
249 (IsInBounds (ZeroExt32to64 (And32 (Const32 [c]) _)) (Const64 [d])) && 0 <= c && int64(c) < d => (ConstBool [true])
250 (IsInBounds (And64 (Const64 [c]) _) (Const64 [d])) && 0 <= c && c < d => (ConstBool [true])
251 (IsInBounds (Const32 [c]) (Const32 [d])) => (ConstBool [0 <= c && c < d])
252 (IsInBounds (Const64 [c]) (Const64 [d])) => (ConstBool [0 <= c && c < d])
253 // (Mod64u x y) is always between 0 (inclusive) and y (exclusive).
254 (IsInBounds (Mod32u _ y) y) => (ConstBool [true])
255 (IsInBounds (Mod64u _ y) y) => (ConstBool [true])
256 // Right shifting an unsigned number limits its value.
257 (IsInBounds (ZeroExt8to64 (Rsh8Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d => (ConstBool [true])
258 (IsInBounds (ZeroExt8to32 (Rsh8Ux64 _ (Const64 [c]))) (Const32 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d => (ConstBool [true])
259 (IsInBounds (ZeroExt8to16 (Rsh8Ux64 _ (Const64 [c]))) (Const16 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d => (ConstBool [true])
260 (IsInBounds (Rsh8Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d => (ConstBool [true])
261 (IsInBounds (ZeroExt16to64 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d => (ConstBool [true])
262 (IsInBounds (ZeroExt16to32 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d => (ConstBool [true])
263 (IsInBounds (Rsh16Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d => (ConstBool [true])
264 (IsInBounds (ZeroExt32to64 (Rsh32Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 32 && 1<<uint(32-c)-1 < d => (ConstBool [true])
265 (IsInBounds (Rsh32Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 32 && 1<<uint(32-c)-1 < d => (ConstBool [true])
266 (IsInBounds (Rsh64Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 64 && 1<<uint(64-c)-1 < d => (ConstBool [true])
267
268 (IsSliceInBounds x x) => (ConstBool [true])
269 (IsSliceInBounds (And32 (Const32 [c]) _) (Const32 [d])) && 0 <= c && c <= d => (ConstBool [true])
270 (IsSliceInBounds (And64 (Const64 [c]) _) (Const64 [d])) && 0 <= c && c <= d => (ConstBool [true])
271 (IsSliceInBounds (Const32 [0]) _) => (ConstBool [true])
272 (IsSliceInBounds (Const64 [0]) _) => (ConstBool [true])
273 (IsSliceInBounds (Const32 [c]) (Const32 [d])) => (ConstBool [0 <= c && c <= d])
274 (IsSliceInBounds (Const64 [c]) (Const64 [d])) => (ConstBool [0 <= c && c <= d])
275 (IsSliceInBounds (SliceLen x) (SliceCap x)) => (ConstBool [true])
276
277 (Eq(64|32|16|8) x x) => (ConstBool [true])
278 (EqB (ConstBool [c]) (ConstBool [d])) => (ConstBool [c == d])
279 (EqB (ConstBool [false]) x) => (Not x)
280 (EqB (ConstBool [true]) x) => x
281
282 (Neq(64|32|16|8) x x) => (ConstBool [false])
283 (NeqB (ConstBool [c]) (ConstBool [d])) => (ConstBool [c != d])
284 (NeqB (ConstBool [false]) x) => x
285 (NeqB (ConstBool [true]) x) => (Not x)
286 (NeqB (Not x) (Not y)) => (NeqB x y)
287
288 (Eq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Eq64 (Const64 <t> [c-d]) x)
289 (Eq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Eq32 (Const32 <t> [c-d]) x)
290 (Eq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Eq16 (Const16 <t> [c-d]) x)
291 (Eq8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) => (Eq8 (Const8 <t> [c-d]) x)
292
293 (Neq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Neq64 (Const64 <t> [c-d]) x)
294 (Neq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Neq32 (Const32 <t> [c-d]) x)
295 (Neq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Neq16 (Const16 <t> [c-d]) x)
296 (Neq8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) => (Neq8 (Const8 <t> [c-d]) x)
297
298 (CondSelect x _ (ConstBool [true ])) => x
299 (CondSelect _ y (ConstBool [false])) => y
300
301 // signed integer range: ( c <= x && x (<|<=) d ) -> ( unsigned(x-c) (<|<=) unsigned(d-c) )
302 (AndB (Leq64 (Const64 [c]) x) ((Less|Leq)64 x (Const64 [d]))) && d >= c => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c])) (Const64 <x.Type> [d-c]))
303 (AndB (Leq32 (Const32 [c]) x) ((Less|Leq)32 x (Const32 [d]))) && d >= c => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c])) (Const32 <x.Type> [d-c]))
304 (AndB (Leq16 (Const16 [c]) x) ((Less|Leq)16 x (Const16 [d]))) && d >= c => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c])) (Const16 <x.Type> [d-c]))
305 (AndB (Leq8 (Const8 [c]) x) ((Less|Leq)8 x (Const8 [d]))) && d >= c => ((Less|Leq)8U (Sub8 <x.Type> x (Const8 <x.Type> [c])) (Const8 <x.Type> [d-c]))
306
307 // signed integer range: ( c < x && x (<|<=) d ) -> ( unsigned(x-(c+1)) (<|<=) unsigned(d-(c+1)) )
308 (AndB (Less64 (Const64 [c]) x) ((Less|Leq)64 x (Const64 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c+1])) (Const64 <x.Type> [d-c-1]))
309 (AndB (Less32 (Const32 [c]) x) ((Less|Leq)32 x (Const32 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c+1])) (Const32 <x.Type> [d-c-1]))
310 (AndB (Less16 (Const16 [c]) x) ((Less|Leq)16 x (Const16 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c+1])) (Const16 <x.Type> [d-c-1]))
311 (AndB (Less8 (Const8 [c]) x) ((Less|Leq)8 x (Const8 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)8U (Sub8 <x.Type> x (Const8 <x.Type> [c+1])) (Const8 <x.Type> [d-c-1]))
312
313 // unsigned integer range: ( c <= x && x (<|<=) d ) -> ( x-c (<|<=) d-c )
314 (AndB (Leq64U (Const64 [c]) x) ((Less|Leq)64U x (Const64 [d]))) && uint64(d) >= uint64(c) => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c])) (Const64 <x.Type> [d-c]))
315 (AndB (Leq32U (Const32 [c]) x) ((Less|Leq)32U x (Const32 [d]))) && uint32(d) >= uint32(c) => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c])) (Const32 <x.Type> [d-c]))
316 (AndB (Leq16U (Const16 [c]) x) ((Less|Leq)16U x (Const16 [d]))) && uint16(d) >= uint16(c) => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c])) (Const16 <x.Type> [d-c]))
317 (AndB (Leq8U (Const8 [c]) x) ((Less|Leq)8U x (Const8 [d]))) && uint8(d) >= uint8(c) => ((Less|Leq)8U (Sub8 <x.Type> x (Const8 <x.Type> [c])) (Const8 <x.Type> [d-c]))
318
319 // unsigned integer range: ( c < x && x (<|<=) d ) -> ( x-(c+1) (<|<=) d-(c+1) )
320 (AndB (Less64U (Const64 [c]) x) ((Less|Leq)64U x (Const64 [d]))) && uint64(d) >= uint64(c+1) && uint64(c+1) > uint64(c) => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c+1])) (Const64 <x.Type> [d-c-1]))
321 (AndB (Less32U (Const32 [c]) x) ((Less|Leq)32U x (Const32 [d]))) && uint32(d) >= uint32(c+1) && uint32(c+1) > uint32(c) => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c+1])) (Const32 <x.Type> [d-c-1]))
322 (AndB (Less16U (Const16 [c]) x) ((Less|Leq)16U x (Const16 [d]))) && uint16(d) >= uint16(c+1) && uint16(c+1) > uint16(c) => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c+1])) (Const16 <x.Type> [d-c-1]))
323 (AndB (Less8U (Const8 [c]) x) ((Less|Leq)8U x (Const8 [d]))) && uint8(d) >= uint8(c+1) && uint8(c+1) > uint8(c) => ((Less|Leq)8U (Sub8 <x.Type> x (Const8 <x.Type> [c+1])) (Const8 <x.Type> [d-c-1]))
324
325 // signed integer range: ( c (<|<=) x || x < d ) -> ( unsigned(c-d) (<|<=) unsigned(x-d) )
326 (OrB ((Less|Leq)64 (Const64 [c]) x) (Less64 x (Const64 [d]))) && c >= d => ((Less|Leq)64U (Const64 <x.Type> [c-d]) (Sub64 <x.Type> x (Const64 <x.Type> [d])))
327 (OrB ((Less|Leq)32 (Const32 [c]) x) (Less32 x (Const32 [d]))) && c >= d => ((Less|Leq)32U (Const32 <x.Type> [c-d]) (Sub32 <x.Type> x (Const32 <x.Type> [d])))
328 (OrB ((Less|Leq)16 (Const16 [c]) x) (Less16 x (Const16 [d]))) && c >= d => ((Less|Leq)16U (Const16 <x.Type> [c-d]) (Sub16 <x.Type> x (Const16 <x.Type> [d])))
329 (OrB ((Less|Leq)8 (Const8 [c]) x) (Less8 x (Const8 [d]))) && c >= d => ((Less|Leq)8U (Const8 <x.Type> [c-d]) (Sub8 <x.Type> x (Const8 <x.Type> [d])))
330
331 // signed integer range: ( c (<|<=) x || x <= d ) -> ( unsigned(c-(d+1)) (<|<=) unsigned(x-(d+1)) )
332 (OrB ((Less|Leq)64 (Const64 [c]) x) (Leq64 x (Const64 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)64U (Const64 <x.Type> [c-d-1]) (Sub64 <x.Type> x (Const64 <x.Type> [d+1])))
333 (OrB ((Less|Leq)32 (Const32 [c]) x) (Leq32 x (Const32 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)32U (Const32 <x.Type> [c-d-1]) (Sub32 <x.Type> x (Const32 <x.Type> [d+1])))
334 (OrB ((Less|Leq)16 (Const16 [c]) x) (Leq16 x (Const16 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)16U (Const16 <x.Type> [c-d-1]) (Sub16 <x.Type> x (Const16 <x.Type> [d+1])))
335 (OrB ((Less|Leq)8 (Const8 [c]) x) (Leq8 x (Const8 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)8U (Const8 <x.Type> [c-d-1]) (Sub8 <x.Type> x (Const8 <x.Type> [d+1])))
336
337 // unsigned integer range: ( c (<|<=) x || x < d ) -> ( c-d (<|<=) x-d )
338 (OrB ((Less|Leq)64U (Const64 [c]) x) (Less64U x (Const64 [d]))) && uint64(c) >= uint64(d) => ((Less|Leq)64U (Const64 <x.Type> [c-d]) (Sub64 <x.Type> x (Const64 <x.Type> [d])))
339 (OrB ((Less|Leq)32U (Const32 [c]) x) (Less32U x (Const32 [d]))) && uint32(c) >= uint32(d) => ((Less|Leq)32U (Const32 <x.Type> [c-d]) (Sub32 <x.Type> x (Const32 <x.Type> [d])))
340 (OrB ((Less|Leq)16U (Const16 [c]) x) (Less16U x (Const16 [d]))) && uint16(c) >= uint16(d) => ((Less|Leq)16U (Const16 <x.Type> [c-d]) (Sub16 <x.Type> x (Const16 <x.Type> [d])))
341 (OrB ((Less|Leq)8U (Const8 [c]) x) (Less8U x (Const8 [d]))) && uint8(c) >= uint8(d) => ((Less|Leq)8U (Const8 <x.Type> [c-d]) (Sub8 <x.Type> x (Const8 <x.Type> [d])))
342
343 // unsigned integer range: ( c (<|<=) x || x <= d ) -> ( c-(d+1) (<|<=) x-(d+1) )
344 (OrB ((Less|Leq)64U (Const64 [c]) x) (Leq64U x (Const64 [d]))) && uint64(c) >= uint64(d+1) && uint64(d+1) > uint64(d) => ((Less|Leq)64U (Const64 <x.Type> [c-d-1]) (Sub64 <x.Type> x (Const64 <x.Type> [d+1])))
345 (OrB ((Less|Leq)32U (Const32 [c]) x) (Leq32U x (Const32 [d]))) && uint32(c) >= uint32(d+1) && uint32(d+1) > uint32(d) => ((Less|Leq)32U (Const32 <x.Type> [c-d-1]) (Sub32 <x.Type> x (Const32 <x.Type> [d+1])))
346 (OrB ((Less|Leq)16U (Const16 [c]) x) (Leq16U x (Const16 [d]))) && uint16(c) >= uint16(d+1) && uint16(d+1) > uint16(d) => ((Less|Leq)16U (Const16 <x.Type> [c-d-1]) (Sub16 <x.Type> x (Const16 <x.Type> [d+1])))
347 (OrB ((Less|Leq)8U (Const8 [c]) x) (Leq8U x (Const8 [d]))) && uint8(c) >= uint8(d+1) && uint8(d+1) > uint8(d) => ((Less|Leq)8U (Const8 <x.Type> [c-d-1]) (Sub8 <x.Type> x (Const8 <x.Type> [d+1])))
348
349 // Canonicalize x-const to x+(-const)
350 (Sub64 x (Const64 <t> [c])) && x.Op != OpConst64 => (Add64 (Const64 <t> [-c]) x)
351 (Sub32 x (Const32 <t> [c])) && x.Op != OpConst32 => (Add32 (Const32 <t> [-c]) x)
352 (Sub16 x (Const16 <t> [c])) && x.Op != OpConst16 => (Add16 (Const16 <t> [-c]) x)
353 (Sub8 x (Const8 <t> [c])) && x.Op != OpConst8 => (Add8 (Const8 <t> [-c]) x)
354
355 // fold negation into comparison operators
356 (Not (Eq(64|32|16|8|B|Ptr|64F|32F) x y)) => (Neq(64|32|16|8|B|Ptr|64F|32F) x y)
357 (Not (Neq(64|32|16|8|B|Ptr|64F|32F) x y)) => (Eq(64|32|16|8|B|Ptr|64F|32F) x y)
358
359 (Not (Less(64|32|16|8) x y)) => (Leq(64|32|16|8) y x)
360 (Not (Less(64|32|16|8)U x y)) => (Leq(64|32|16|8)U y x)
361 (Not (Leq(64|32|16|8) x y)) => (Less(64|32|16|8) y x)
362 (Not (Leq(64|32|16|8)U x y)) => (Less(64|32|16|8)U y x)
363
364 // Distribute multiplication c * (d+x) -> c*d + c*x. Useful for:
365 // a[i].b = ...; a[i+1].b = ...
366 (Mul64 (Const64 <t> [c]) (Add64 <t> (Const64 <t> [d]) x)) =>
367 (Add64 (Const64 <t> [c*d]) (Mul64 <t> (Const64 <t> [c]) x))
368 (Mul32 (Const32 <t> [c]) (Add32 <t> (Const32 <t> [d]) x)) =>
369 (Add32 (Const32 <t> [c*d]) (Mul32 <t> (Const32 <t> [c]) x))
370 (Mul16 (Const16 <t> [c]) (Add16 <t> (Const16 <t> [d]) x)) =>
371 (Add16 (Const16 <t> [c*d]) (Mul16 <t> (Const16 <t> [c]) x))
372 (Mul8 (Const8 <t> [c]) (Add8 <t> (Const8 <t> [d]) x)) =>
373 (Add8 (Const8 <t> [c*d]) (Mul8 <t> (Const8 <t> [c]) x))
374
375 // Rewrite x*y ± x*z to x*(y±z)
376 (Add(64|32|16|8) <t> (Mul(64|32|16|8) x y) (Mul(64|32|16|8) x z))
377 => (Mul(64|32|16|8) x (Add(64|32|16|8) <t> y z))
378 (Sub(64|32|16|8) <t> (Mul(64|32|16|8) x y) (Mul(64|32|16|8) x z))
379 => (Mul(64|32|16|8) x (Sub(64|32|16|8) <t> y z))
380
381 // rewrite shifts of 8/16/32 bit consts into 64 bit consts to reduce
382 // the number of the other rewrite rules for const shifts
383 (Lsh64x32 <t> x (Const32 [c])) => (Lsh64x64 x (Const64 <t> [int64(uint32(c))]))
384 (Lsh64x16 <t> x (Const16 [c])) => (Lsh64x64 x (Const64 <t> [int64(uint16(c))]))
385 (Lsh64x8 <t> x (Const8 [c])) => (Lsh64x64 x (Const64 <t> [int64(uint8(c))]))
386 (Rsh64x32 <t> x (Const32 [c])) => (Rsh64x64 x (Const64 <t> [int64(uint32(c))]))
387 (Rsh64x16 <t> x (Const16 [c])) => (Rsh64x64 x (Const64 <t> [int64(uint16(c))]))
388 (Rsh64x8 <t> x (Const8 [c])) => (Rsh64x64 x (Const64 <t> [int64(uint8(c))]))
389 (Rsh64Ux32 <t> x (Const32 [c])) => (Rsh64Ux64 x (Const64 <t> [int64(uint32(c))]))
390 (Rsh64Ux16 <t> x (Const16 [c])) => (Rsh64Ux64 x (Const64 <t> [int64(uint16(c))]))
391 (Rsh64Ux8 <t> x (Const8 [c])) => (Rsh64Ux64 x (Const64 <t> [int64(uint8(c))]))
392
393 (Lsh32x32 <t> x (Const32 [c])) => (Lsh32x64 x (Const64 <t> [int64(uint32(c))]))
394 (Lsh32x16 <t> x (Const16 [c])) => (Lsh32x64 x (Const64 <t> [int64(uint16(c))]))
395 (Lsh32x8 <t> x (Const8 [c])) => (Lsh32x64 x (Const64 <t> [int64(uint8(c))]))
396 (Rsh32x32 <t> x (Const32 [c])) => (Rsh32x64 x (Const64 <t> [int64(uint32(c))]))
397 (Rsh32x16 <t> x (Const16 [c])) => (Rsh32x64 x (Const64 <t> [int64(uint16(c))]))
398 (Rsh32x8 <t> x (Const8 [c])) => (Rsh32x64 x (Const64 <t> [int64(uint8(c))]))
399 (Rsh32Ux32 <t> x (Const32 [c])) => (Rsh32Ux64 x (Const64 <t> [int64(uint32(c))]))
400 (Rsh32Ux16 <t> x (Const16 [c])) => (Rsh32Ux64 x (Const64 <t> [int64(uint16(c))]))
401 (Rsh32Ux8 <t> x (Const8 [c])) => (Rsh32Ux64 x (Const64 <t> [int64(uint8(c))]))
402
403 (Lsh16x32 <t> x (Const32 [c])) => (Lsh16x64 x (Const64 <t> [int64(uint32(c))]))
404 (Lsh16x16 <t> x (Const16 [c])) => (Lsh16x64 x (Const64 <t> [int64(uint16(c))]))
405 (Lsh16x8 <t> x (Const8 [c])) => (Lsh16x64 x (Const64 <t> [int64(uint8(c))]))
406 (Rsh16x32 <t> x (Const32 [c])) => (Rsh16x64 x (Const64 <t> [int64(uint32(c))]))
407 (Rsh16x16 <t> x (Const16 [c])) => (Rsh16x64 x (Const64 <t> [int64(uint16(c))]))
408 (Rsh16x8 <t> x (Const8 [c])) => (Rsh16x64 x (Const64 <t> [int64(uint8(c))]))
409 (Rsh16Ux32 <t> x (Const32 [c])) => (Rsh16Ux64 x (Const64 <t> [int64(uint32(c))]))
410 (Rsh16Ux16 <t> x (Const16 [c])) => (Rsh16Ux64 x (Const64 <t> [int64(uint16(c))]))
411 (Rsh16Ux8 <t> x (Const8 [c])) => (Rsh16Ux64 x (Const64 <t> [int64(uint8(c))]))
412
413 (Lsh8x32 <t> x (Const32 [c])) => (Lsh8x64 x (Const64 <t> [int64(uint32(c))]))
414 (Lsh8x16 <t> x (Const16 [c])) => (Lsh8x64 x (Const64 <t> [int64(uint16(c))]))
415 (Lsh8x8 <t> x (Const8 [c])) => (Lsh8x64 x (Const64 <t> [int64(uint8(c))]))
416 (Rsh8x32 <t> x (Const32 [c])) => (Rsh8x64 x (Const64 <t> [int64(uint32(c))]))
417 (Rsh8x16 <t> x (Const16 [c])) => (Rsh8x64 x (Const64 <t> [int64(uint16(c))]))
418 (Rsh8x8 <t> x (Const8 [c])) => (Rsh8x64 x (Const64 <t> [int64(uint8(c))]))
419 (Rsh8Ux32 <t> x (Const32 [c])) => (Rsh8Ux64 x (Const64 <t> [int64(uint32(c))]))
420 (Rsh8Ux16 <t> x (Const16 [c])) => (Rsh8Ux64 x (Const64 <t> [int64(uint16(c))]))
421 (Rsh8Ux8 <t> x (Const8 [c])) => (Rsh8Ux64 x (Const64 <t> [int64(uint8(c))]))
422
423 // shifts by zero
424 (Lsh(64|32|16|8)x64 x (Const64 [0])) => x
425 (Rsh(64|32|16|8)x64 x (Const64 [0])) => x
426 (Rsh(64|32|16|8)Ux64 x (Const64 [0])) => x
427
428 // rotates by multiples of register width
429 (RotateLeft64 x (Const64 [c])) && c%64 == 0 => x
430 (RotateLeft32 x (Const32 [c])) && c%32 == 0 => x
431 (RotateLeft16 x (Const16 [c])) && c%16 == 0 => x
432 (RotateLeft8 x (Const8 [c])) && c%8 == 0 => x
433
434 // zero shifted
435 (Lsh64x(64|32|16|8) (Const64 [0]) _) => (Const64 [0])
436 (Rsh64x(64|32|16|8) (Const64 [0]) _) => (Const64 [0])
437 (Rsh64Ux(64|32|16|8) (Const64 [0]) _) => (Const64 [0])
438 (Lsh32x(64|32|16|8) (Const32 [0]) _) => (Const32 [0])
439 (Rsh32x(64|32|16|8) (Const32 [0]) _) => (Const32 [0])
440 (Rsh32Ux(64|32|16|8) (Const32 [0]) _) => (Const32 [0])
441 (Lsh16x(64|32|16|8) (Const16 [0]) _) => (Const16 [0])
442 (Rsh16x(64|32|16|8) (Const16 [0]) _) => (Const16 [0])
443 (Rsh16Ux(64|32|16|8) (Const16 [0]) _) => (Const16 [0])
444 (Lsh8x(64|32|16|8) (Const8 [0]) _) => (Const8 [0])
445 (Rsh8x(64|32|16|8) (Const8 [0]) _) => (Const8 [0])
446 (Rsh8Ux(64|32|16|8) (Const8 [0]) _) => (Const8 [0])
447
448 // large left shifts of all values, and right shifts of unsigned values
449 ((Lsh64|Rsh64U)x64 _ (Const64 [c])) && uint64(c) >= 64 => (Const64 [0])
450 ((Lsh32|Rsh32U)x64 _ (Const64 [c])) && uint64(c) >= 32 => (Const32 [0])
451 ((Lsh16|Rsh16U)x64 _ (Const64 [c])) && uint64(c) >= 16 => (Const16 [0])
452 ((Lsh8|Rsh8U)x64 _ (Const64 [c])) && uint64(c) >= 8 => (Const8 [0])
453
454 // combine const shifts
455 (Lsh64x64 <t> (Lsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh64x64 x (Const64 <t> [c+d]))
456 (Lsh32x64 <t> (Lsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh32x64 x (Const64 <t> [c+d]))
457 (Lsh16x64 <t> (Lsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh16x64 x (Const64 <t> [c+d]))
458 (Lsh8x64 <t> (Lsh8x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh8x64 x (Const64 <t> [c+d]))
459
460 (Rsh64x64 <t> (Rsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh64x64 x (Const64 <t> [c+d]))
461 (Rsh32x64 <t> (Rsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh32x64 x (Const64 <t> [c+d]))
462 (Rsh16x64 <t> (Rsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh16x64 x (Const64 <t> [c+d]))
463 (Rsh8x64 <t> (Rsh8x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh8x64 x (Const64 <t> [c+d]))
464
465 (Rsh64Ux64 <t> (Rsh64Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh64Ux64 x (Const64 <t> [c+d]))
466 (Rsh32Ux64 <t> (Rsh32Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh32Ux64 x (Const64 <t> [c+d]))
467 (Rsh16Ux64 <t> (Rsh16Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh16Ux64 x (Const64 <t> [c+d]))
468 (Rsh8Ux64 <t> (Rsh8Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh8Ux64 x (Const64 <t> [c+d]))
469
470 // Remove signed right shift before an unsigned right shift that extracts the sign bit.
471 (Rsh8Ux64 (Rsh8x64 x _) (Const64 <t> [7] )) => (Rsh8Ux64 x (Const64 <t> [7] ))
472 (Rsh16Ux64 (Rsh16x64 x _) (Const64 <t> [15])) => (Rsh16Ux64 x (Const64 <t> [15]))
473 (Rsh32Ux64 (Rsh32x64 x _) (Const64 <t> [31])) => (Rsh32Ux64 x (Const64 <t> [31]))
474 (Rsh64Ux64 (Rsh64x64 x _) (Const64 <t> [63])) => (Rsh64Ux64 x (Const64 <t> [63]))
475
476 // Convert x>>c<<c to x&^(1<<c-1)
477 (Lsh64x64 i:(Rsh(64|64U)x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 64 && i.Uses == 1 => (And64 x (Const64 <v.Type> [int64(-1) << c]))
478 (Lsh32x64 i:(Rsh(32|32U)x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 32 && i.Uses == 1 => (And32 x (Const32 <v.Type> [int32(-1) << c]))
479 (Lsh16x64 i:(Rsh(16|16U)x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 16 && i.Uses == 1 => (And16 x (Const16 <v.Type> [int16(-1) << c]))
480 (Lsh8x64 i:(Rsh(8|8U)x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 8 && i.Uses == 1 => (And8 x (Const8 <v.Type> [int8(-1) << c]))
481 // similarly for x<<c>>c
482 (Rsh64Ux64 i:(Lsh64x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 64 && i.Uses == 1 => (And64 x (Const64 <v.Type> [int64(^uint64(0)>>c)]))
483 (Rsh32Ux64 i:(Lsh32x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 32 && i.Uses == 1 => (And32 x (Const32 <v.Type> [int32(^uint32(0)>>c)]))
484 (Rsh16Ux64 i:(Lsh16x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 16 && i.Uses == 1 => (And16 x (Const16 <v.Type> [int16(^uint16(0)>>c)]))
485 (Rsh8Ux64 i:(Lsh8x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 8 && i.Uses == 1 => (And8 x (Const8 <v.Type> [int8 (^uint8 (0)>>c)]))
486
487 // ((x >> c1) << c2) >> c3
488 (Rsh(64|32|16|8)Ux64 (Lsh(64|32|16|8)x64 (Rsh(64|32|16|8)Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3]))
489 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3)
490 => (Rsh(64|32|16|8)Ux64 x (Const64 <typ.UInt64> [c1-c2+c3]))
491
492 // ((x << c1) >> c2) << c3
493 (Lsh(64|32|16|8)x64 (Rsh(64|32|16|8)Ux64 (Lsh(64|32|16|8)x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3]))
494 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3)
495 => (Lsh(64|32|16|8)x64 x (Const64 <typ.UInt64> [c1-c2+c3]))
496
497 // (x >> c) & uppermask = 0
498 (And64 (Const64 [m]) (Rsh64Ux64 _ (Const64 [c]))) && c >= int64(64-ntz64(m)) => (Const64 [0])
499 (And32 (Const32 [m]) (Rsh32Ux64 _ (Const64 [c]))) && c >= int64(32-ntz32(m)) => (Const32 [0])
500 (And16 (Const16 [m]) (Rsh16Ux64 _ (Const64 [c]))) && c >= int64(16-ntz16(m)) => (Const16 [0])
501 (And8 (Const8 [m]) (Rsh8Ux64 _ (Const64 [c]))) && c >= int64(8-ntz8(m)) => (Const8 [0])
502
503 // (x << c) & lowermask = 0
504 (And64 (Const64 [m]) (Lsh64x64 _ (Const64 [c]))) && c >= int64(64-nlz64(m)) => (Const64 [0])
505 (And32 (Const32 [m]) (Lsh32x64 _ (Const64 [c]))) && c >= int64(32-nlz32(m)) => (Const32 [0])
506 (And16 (Const16 [m]) (Lsh16x64 _ (Const64 [c]))) && c >= int64(16-nlz16(m)) => (Const16 [0])
507 (And8 (Const8 [m]) (Lsh8x64 _ (Const64 [c]))) && c >= int64(8-nlz8(m)) => (Const8 [0])
508
509 // replace shifts with zero extensions
510 (Rsh16Ux64 (Lsh16x64 x (Const64 [8])) (Const64 [8])) => (ZeroExt8to16 (Trunc16to8 <typ.UInt8> x))
511 (Rsh32Ux64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) => (ZeroExt8to32 (Trunc32to8 <typ.UInt8> x))
512 (Rsh64Ux64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) => (ZeroExt8to64 (Trunc64to8 <typ.UInt8> x))
513 (Rsh32Ux64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) => (ZeroExt16to32 (Trunc32to16 <typ.UInt16> x))
514 (Rsh64Ux64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) => (ZeroExt16to64 (Trunc64to16 <typ.UInt16> x))
515 (Rsh64Ux64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) => (ZeroExt32to64 (Trunc64to32 <typ.UInt32> x))
516
517 // replace shifts with sign extensions
518 (Rsh16x64 (Lsh16x64 x (Const64 [8])) (Const64 [8])) => (SignExt8to16 (Trunc16to8 <typ.Int8> x))
519 (Rsh32x64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) => (SignExt8to32 (Trunc32to8 <typ.Int8> x))
520 (Rsh64x64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) => (SignExt8to64 (Trunc64to8 <typ.Int8> x))
521 (Rsh32x64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) => (SignExt16to32 (Trunc32to16 <typ.Int16> x))
522 (Rsh64x64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) => (SignExt16to64 (Trunc64to16 <typ.Int16> x))
523 (Rsh64x64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) => (SignExt32to64 (Trunc64to32 <typ.Int32> x))
524
525 // ((x >> c) & d) << e
526 (Lsh64x64 (And64 (Rsh(64|64U)x64 <t> x (Const64 <t2> [c])) (Const64 [d])) (Const64 [e])) && c >= e => (And64 (Rsh(64|64U)x64 <t> x (Const64 <t2> [c-e])) (Const64 <t> [d<<e]))
527 (Lsh32x64 (And32 (Rsh(32|32U)x64 <t> x (Const64 <t2> [c])) (Const32 [d])) (Const64 [e])) && c >= e => (And32 (Rsh(32|32U)x64 <t> x (Const64 <t2> [c-e])) (Const32 <t> [d<<e]))
528 (Lsh16x64 (And16 (Rsh(16|16U)x64 <t> x (Const64 <t2> [c])) (Const16 [d])) (Const64 [e])) && c >= e => (And16 (Rsh(16|16U)x64 <t> x (Const64 <t2> [c-e])) (Const16 <t> [d<<e]))
529 (Lsh8x64 (And8 (Rsh(8|8U)x64 <t> x (Const64 <t2> [c])) (Const8 [d])) (Const64 [e])) && c >= e => (And8 (Rsh(8|8U)x64 <t> x (Const64 <t2> [c-e])) (Const8 <t> [d<<e]))
530 (Lsh64x64 (And64 (Rsh(64|64U)x64 <t> x (Const64 <t2> [c])) (Const64 [d])) (Const64 [e])) && c < e => (And64 (Lsh64x64 <t> x (Const64 <t2> [e-c])) (Const64 <t> [d<<e]))
531 (Lsh32x64 (And32 (Rsh(32|32U)x64 <t> x (Const64 <t2> [c])) (Const32 [d])) (Const64 [e])) && c < e => (And32 (Lsh32x64 <t> x (Const64 <t2> [e-c])) (Const32 <t> [d<<e]))
532 (Lsh16x64 (And16 (Rsh(16|16U)x64 <t> x (Const64 <t2> [c])) (Const16 [d])) (Const64 [e])) && c < e => (And16 (Lsh16x64 <t> x (Const64 <t2> [e-c])) (Const16 <t> [d<<e]))
533 (Lsh8x64 (And8 (Rsh(8|8U)x64 <t> x (Const64 <t2> [c])) (Const8 [d])) (Const64 [e])) && c < e => (And8 (Lsh8x64 <t> x (Const64 <t2> [e-c])) (Const8 <t> [d<<e]))
534
535 // constant comparisons
536 (Eq(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c == d])
537 (Neq(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c != d])
538 (Less(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c < d])
539 (Leq(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c <= d])
540
541 (Less64U (Const64 [c]) (Const64 [d])) => (ConstBool [uint64(c) < uint64(d)])
542 (Less32U (Const32 [c]) (Const32 [d])) => (ConstBool [uint32(c) < uint32(d)])
543 (Less16U (Const16 [c]) (Const16 [d])) => (ConstBool [uint16(c) < uint16(d)])
544 (Less8U (Const8 [c]) (Const8 [d])) => (ConstBool [ uint8(c) < uint8(d)])
545
546 (Leq64U (Const64 [c]) (Const64 [d])) => (ConstBool [uint64(c) <= uint64(d)])
547 (Leq32U (Const32 [c]) (Const32 [d])) => (ConstBool [uint32(c) <= uint32(d)])
548 (Leq16U (Const16 [c]) (Const16 [d])) => (ConstBool [uint16(c) <= uint16(d)])
549 (Leq8U (Const8 [c]) (Const8 [d])) => (ConstBool [ uint8(c) <= uint8(d)])
550
551 (Leq8 (Const8 [0]) (And8 _ (Const8 [c]))) && c >= 0 => (ConstBool [true])
552 (Leq16 (Const16 [0]) (And16 _ (Const16 [c]))) && c >= 0 => (ConstBool [true])
553 (Leq32 (Const32 [0]) (And32 _ (Const32 [c]))) && c >= 0 => (ConstBool [true])
554 (Leq64 (Const64 [0]) (And64 _ (Const64 [c]))) && c >= 0 => (ConstBool [true])
555
556 (Leq8 (Const8 [0]) (Rsh8Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true])
557 (Leq16 (Const16 [0]) (Rsh16Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true])
558 (Leq32 (Const32 [0]) (Rsh32Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true])
559 (Leq64 (Const64 [0]) (Rsh64Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true])
560
561 // prefer equalities with zero
562 (Less(64|32|16|8) (Const(64|32|16|8) <t> [0]) x) && isNonNegative(x) => (Neq(64|32|16|8) (Const(64|32|16|8) <t> [0]) x)
563 (Less(64|32|16|8) x (Const(64|32|16|8) <t> [1])) && isNonNegative(x) => (Eq(64|32|16|8) (Const(64|32|16|8) <t> [0]) x)
564 (Less(64|32|16|8)U x (Const(64|32|16|8) <t> [1])) => (Eq(64|32|16|8) (Const(64|32|16|8) <t> [0]) x)
565 (Leq(64|32|16|8)U (Const(64|32|16|8) <t> [1]) x) => (Neq(64|32|16|8) (Const(64|32|16|8) <t> [0]) x)
566
567 // prefer comparisons with zero
568 (Less(64|32|16|8) x (Const(64|32|16|8) <t> [1])) => (Leq(64|32|16|8) x (Const(64|32|16|8) <t> [0]))
569 (Leq(64|32|16|8) x (Const(64|32|16|8) <t> [-1])) => (Less(64|32|16|8) x (Const(64|32|16|8) <t> [0]))
570 (Leq(64|32|16|8) (Const(64|32|16|8) <t> [1]) x) => (Less(64|32|16|8) (Const(64|32|16|8) <t> [0]) x)
571 (Less(64|32|16|8) (Const(64|32|16|8) <t> [-1]) x) => (Leq(64|32|16|8) (Const(64|32|16|8) <t> [0]) x)
572
573 // constant floating point comparisons
574 (Eq32F (Const32F [c]) (Const32F [d])) => (ConstBool [c == d])
575 (Eq64F (Const64F [c]) (Const64F [d])) => (ConstBool [c == d])
576 (Neq32F (Const32F [c]) (Const32F [d])) => (ConstBool [c != d])
577 (Neq64F (Const64F [c]) (Const64F [d])) => (ConstBool [c != d])
578 (Less32F (Const32F [c]) (Const32F [d])) => (ConstBool [c < d])
579 (Less64F (Const64F [c]) (Const64F [d])) => (ConstBool [c < d])
580 (Leq32F (Const32F [c]) (Const32F [d])) => (ConstBool [c <= d])
581 (Leq64F (Const64F [c]) (Const64F [d])) => (ConstBool [c <= d])
582
583 // simplifications
584 (Or(64|32|16|8) x x) => x
585 (Or(64|32|16|8) (Const(64|32|16|8) [0]) x) => x
586 (Or(64|32|16|8) (Const(64|32|16|8) [-1]) _) => (Const(64|32|16|8) [-1])
587 (Or(64|32|16|8) (Com(64|32|16|8) x) x) => (Const(64|32|16|8) [-1])
588
589 (And(64|32|16|8) x x) => x
590 (And(64|32|16|8) (Const(64|32|16|8) [-1]) x) => x
591 (And(64|32|16|8) (Const(64|32|16|8) [0]) _) => (Const(64|32|16|8) [0])
592 (And(64|32|16|8) (Com(64|32|16|8) x) x) => (Const(64|32|16|8) [0])
593
594 (Xor(64|32|16|8) x x) => (Const(64|32|16|8) [0])
595 (Xor(64|32|16|8) (Const(64|32|16|8) [0]) x) => x
596 (Xor(64|32|16|8) (Com(64|32|16|8) x) x) => (Const(64|32|16|8) [-1])
597
598 (Add(64|32|16|8) (Const(64|32|16|8) [0]) x) => x
599 (Sub(64|32|16|8) x x) => (Const(64|32|16|8) [0])
600 (Mul(64|32|16|8) (Const(64|32|16|8) [0]) _) => (Const(64|32|16|8) [0])
601 (Mul(64|32)uover <t> (Const(64|32) [0]) x) => (MakeTuple (Const(64|32) <t.FieldType(0)> [0]) (ConstBool <t.FieldType(1)> [false]))
602
603 (Com(64|32|16|8) (Com(64|32|16|8) x)) => x
604 (Com(64|32|16|8) (Const(64|32|16|8) [c])) => (Const(64|32|16|8) [^c])
605
606 (Neg(64|32|16|8) (Sub(64|32|16|8) x y)) => (Sub(64|32|16|8) y x)
607 (Add(64|32|16|8) x (Neg(64|32|16|8) y)) => (Sub(64|32|16|8) x y)
608
609 (Xor(64|32|16|8) (Const(64|32|16|8) [-1]) x) => (Com(64|32|16|8) x)
610
611 (Sub(64|32|16|8) (Neg(64|32|16|8) x) (Com(64|32|16|8) x)) => (Const(64|32|16|8) [1])
612 (Sub(64|32|16|8) (Com(64|32|16|8) x) (Neg(64|32|16|8) x)) => (Const(64|32|16|8) [-1])
613 (Add(64|32|16|8) (Com(64|32|16|8) x) x) => (Const(64|32|16|8) [-1])
614
615 // Simplification when involving common integer
616 // (t + x) - (t + y) == x - y
617 // (t + x) - (y + t) == x - y
618 // (x + t) - (y + t) == x - y
619 // (x + t) - (t + y) == x - y
620 // (x - t) + (t + y) == x + y
621 // (x - t) + (y + t) == x + y
622 (Sub(64|32|16|8) (Add(64|32|16|8) t x) (Add(64|32|16|8) t y)) => (Sub(64|32|16|8) x y)
623 (Add(64|32|16|8) (Sub(64|32|16|8) x t) (Add(64|32|16|8) t y)) => (Add(64|32|16|8) x y)
624
625 // ^(x-1) == ^x+1 == -x
626 (Add(64|32|16|8) (Const(64|32|16|8) [1]) (Com(64|32|16|8) x)) => (Neg(64|32|16|8) x)
627 (Com(64|32|16|8) (Add(64|32|16|8) (Const(64|32|16|8) [-1]) x)) => (Neg(64|32|16|8) x)
628
629 // -(-x) == x
630 (Neg(64|32|16|8) (Neg(64|32|16|8) x)) => x
631
632 // -^x == x+1
633 (Neg(64|32|16|8) <t> (Com(64|32|16|8) x)) => (Add(64|32|16|8) (Const(64|32|16|8) <t> [1]) x)
634
635 (And(64|32|16|8) x (And(64|32|16|8) x y)) => (And(64|32|16|8) x y)
636 (Or(64|32|16|8) x (Or(64|32|16|8) x y)) => (Or(64|32|16|8) x y)
637 (Xor(64|32|16|8) x (Xor(64|32|16|8) x y)) => y
638
639 // Fold comparisons with numeric bounds
640 (Less(64|32|16|8)U _ (Const(64|32|16|8) [0])) => (ConstBool [false])
641 (Leq(64|32|16|8)U (Const(64|32|16|8) [0]) _) => (ConstBool [true])
642 (Less(64|32|16|8)U (Const(64|32|16|8) [-1]) _) => (ConstBool [false])
643 (Leq(64|32|16|8)U _ (Const(64|32|16|8) [-1])) => (ConstBool [true])
644 (Less64 _ (Const64 [math.MinInt64])) => (ConstBool [false])
645 (Less32 _ (Const32 [math.MinInt32])) => (ConstBool [false])
646 (Less16 _ (Const16 [math.MinInt16])) => (ConstBool [false])
647 (Less8 _ (Const8 [math.MinInt8 ])) => (ConstBool [false])
648 (Leq64 (Const64 [math.MinInt64]) _) => (ConstBool [true])
649 (Leq32 (Const32 [math.MinInt32]) _) => (ConstBool [true])
650 (Leq16 (Const16 [math.MinInt16]) _) => (ConstBool [true])
651 (Leq8 (Const8 [math.MinInt8 ]) _) => (ConstBool [true])
652 (Less64 (Const64 [math.MaxInt64]) _) => (ConstBool [false])
653 (Less32 (Const32 [math.MaxInt32]) _) => (ConstBool [false])
654 (Less16 (Const16 [math.MaxInt16]) _) => (ConstBool [false])
655 (Less8 (Const8 [math.MaxInt8 ]) _) => (ConstBool [false])
656 (Leq64 _ (Const64 [math.MaxInt64])) => (ConstBool [true])
657 (Leq32 _ (Const32 [math.MaxInt32])) => (ConstBool [true])
658 (Leq16 _ (Const16 [math.MaxInt16])) => (ConstBool [true])
659 (Leq8 _ (Const8 [math.MaxInt8 ])) => (ConstBool [true])
660
661 // Canonicalize <= on numeric bounds and < near numeric bounds to ==
662 (Leq(64|32|16|8)U x c:(Const(64|32|16|8) [0])) => (Eq(64|32|16|8) x c)
663 (Leq(64|32|16|8)U c:(Const(64|32|16|8) [-1]) x) => (Eq(64|32|16|8) x c)
664 (Less(64|32|16|8)U x (Const(64|32|16|8) <t> [1])) => (Eq(64|32|16|8) x (Const(64|32|16|8) <t> [0]))
665 (Less(64|32|16|8)U (Const(64|32|16|8) <t> [-2]) x) => (Eq(64|32|16|8) x (Const(64|32|16|8) <t> [-1]))
666 (Leq64 x c:(Const64 [math.MinInt64])) => (Eq64 x c)
667 (Leq32 x c:(Const32 [math.MinInt32])) => (Eq32 x c)
668 (Leq16 x c:(Const16 [math.MinInt16])) => (Eq16 x c)
669 (Leq8 x c:(Const8 [math.MinInt8 ])) => (Eq8 x c)
670 (Leq64 c:(Const64 [math.MaxInt64]) x) => (Eq64 x c)
671 (Leq32 c:(Const32 [math.MaxInt32]) x) => (Eq32 x c)
672 (Leq16 c:(Const16 [math.MaxInt16]) x) => (Eq16 x c)
673 (Leq8 c:(Const8 [math.MaxInt8 ]) x) => (Eq8 x c)
674 (Less64 x (Const64 <t> [math.MinInt64+1])) => (Eq64 x (Const64 <t> [math.MinInt64]))
675 (Less32 x (Const32 <t> [math.MinInt32+1])) => (Eq32 x (Const32 <t> [math.MinInt32]))
676 (Less16 x (Const16 <t> [math.MinInt16+1])) => (Eq16 x (Const16 <t> [math.MinInt16]))
677 (Less8 x (Const8 <t> [math.MinInt8 +1])) => (Eq8 x (Const8 <t> [math.MinInt8 ]))
678 (Less64 (Const64 <t> [math.MaxInt64-1]) x) => (Eq64 x (Const64 <t> [math.MaxInt64]))
679 (Less32 (Const32 <t> [math.MaxInt32-1]) x) => (Eq32 x (Const32 <t> [math.MaxInt32]))
680 (Less16 (Const16 <t> [math.MaxInt16-1]) x) => (Eq16 x (Const16 <t> [math.MaxInt16]))
681 (Less8 (Const8 <t> [math.MaxInt8 -1]) x) => (Eq8 x (Const8 <t> [math.MaxInt8 ]))
682
683 // Ands clear bits. Ors set bits.
684 // If a subsequent Or will set all the bits
685 // that an And cleared, we can skip the And.
686 // This happens in bitmasking code like:
687 // x &^= 3 << shift // clear two old bits
688 // x |= v << shift // set two new bits
689 // when shift is a small constant and v ends up a constant 3.
690 (Or8 (And8 x (Const8 [c2])) (Const8 <t> [c1])) && ^(c1 | c2) == 0 => (Or8 (Const8 <t> [c1]) x)
691 (Or16 (And16 x (Const16 [c2])) (Const16 <t> [c1])) && ^(c1 | c2) == 0 => (Or16 (Const16 <t> [c1]) x)
692 (Or32 (And32 x (Const32 [c2])) (Const32 <t> [c1])) && ^(c1 | c2) == 0 => (Or32 (Const32 <t> [c1]) x)
693 (Or64 (And64 x (Const64 [c2])) (Const64 <t> [c1])) && ^(c1 | c2) == 0 => (Or64 (Const64 <t> [c1]) x)
694
695 (Trunc64to8 (And64 (Const64 [y]) x)) && y&0xFF == 0xFF => (Trunc64to8 x)
696 (Trunc64to16 (And64 (Const64 [y]) x)) && y&0xFFFF == 0xFFFF => (Trunc64to16 x)
697 (Trunc64to32 (And64 (Const64 [y]) x)) && y&0xFFFFFFFF == 0xFFFFFFFF => (Trunc64to32 x)
698 (Trunc32to8 (And32 (Const32 [y]) x)) && y&0xFF == 0xFF => (Trunc32to8 x)
699 (Trunc32to16 (And32 (Const32 [y]) x)) && y&0xFFFF == 0xFFFF => (Trunc32to16 x)
700 (Trunc16to8 (And16 (Const16 [y]) x)) && y&0xFF == 0xFF => (Trunc16to8 x)
701
702 (ZeroExt8to64 (Trunc64to8 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 56 => x
703 (ZeroExt16to64 (Trunc64to16 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 48 => x
704 (ZeroExt32to64 (Trunc64to32 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 32 => x
705 (ZeroExt8to32 (Trunc32to8 x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 24 => x
706 (ZeroExt16to32 (Trunc32to16 x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 16 => x
707 (ZeroExt8to16 (Trunc16to8 x:(Rsh16Ux64 _ (Const64 [s])))) && s >= 8 => x
708
709 (SignExt8to64 (Trunc64to8 x:(Rsh64x64 _ (Const64 [s])))) && s >= 56 => x
710 (SignExt16to64 (Trunc64to16 x:(Rsh64x64 _ (Const64 [s])))) && s >= 48 => x
711 (SignExt32to64 (Trunc64to32 x:(Rsh64x64 _ (Const64 [s])))) && s >= 32 => x
712 (SignExt8to32 (Trunc32to8 x:(Rsh32x64 _ (Const64 [s])))) && s >= 24 => x
713 (SignExt16to32 (Trunc32to16 x:(Rsh32x64 _ (Const64 [s])))) && s >= 16 => x
714 (SignExt8to16 (Trunc16to8 x:(Rsh16x64 _ (Const64 [s])))) && s >= 8 => x
715
716 (Slicemask (Const32 [x])) && x > 0 => (Const32 [-1])
717 (Slicemask (Const32 [0])) => (Const32 [0])
718 (Slicemask (Const64 [x])) && x > 0 => (Const64 [-1])
719 (Slicemask (Const64 [0])) => (Const64 [0])
720
721 // simplifications often used for lengths. e.g. len(s[i:i+5])==5
722 (Sub(64|32|16|8) (Add(64|32|16|8) x y) x) => y
723 (Sub(64|32|16|8) (Add(64|32|16|8) x y) y) => x
724 (Sub(64|32|16|8) (Sub(64|32|16|8) x y) x) => (Neg(64|32|16|8) y)
725 (Sub(64|32|16|8) x (Add(64|32|16|8) x y)) => (Neg(64|32|16|8) y)
726 (Add(64|32|16|8) x (Sub(64|32|16|8) y x)) => y
727 (Add(64|32|16|8) x (Add(64|32|16|8) y (Sub(64|32|16|8) z x))) => (Add(64|32|16|8) y z)
728
729 // basic phi simplifications
730 (Phi (Const8 [c]) (Const8 [c])) => (Const8 [c])
731 (Phi (Const16 [c]) (Const16 [c])) => (Const16 [c])
732 (Phi (Const32 [c]) (Const32 [c])) => (Const32 [c])
733 (Phi (Const64 [c]) (Const64 [c])) => (Const64 [c])
734
735 // slice and interface comparisons
736 // The frontend ensures that we can only compare against nil,
737 // so we need only compare the first word (interface type or slice ptr).
738 (EqInter x y) => (EqPtr (ITab x) (ITab y))
739 (NeqInter x y) => (NeqPtr (ITab x) (ITab y))
740 (EqSlice x y) => (EqPtr (SlicePtr x) (SlicePtr y))
741 (NeqSlice x y) => (NeqPtr (SlicePtr x) (SlicePtr y))
742
743 // Load of store of same address, with compatibly typed value and same size
744 (Load <t1> p1 (Store {t2} p2 x _))
745 && isSamePtr(p1, p2)
746 && copyCompatibleType(t1, x.Type)
747 && t1.Size() == t2.Size()
748 => x
749 (Load <t1> p1 (Store {t2} p2 _ (Store {t3} p3 x _)))
750 && isSamePtr(p1, p3)
751 && copyCompatibleType(t1, x.Type)
752 && t1.Size() == t3.Size()
753 && disjoint(p3, t3.Size(), p2, t2.Size())
754 => x
755 (Load <t1> p1 (Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 x _))))
756 && isSamePtr(p1, p4)
757 && copyCompatibleType(t1, x.Type)
758 && t1.Size() == t4.Size()
759 && disjoint(p4, t4.Size(), p2, t2.Size())
760 && disjoint(p4, t4.Size(), p3, t3.Size())
761 => x
762 (Load <t1> p1 (Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 _ (Store {t5} p5 x _)))))
763 && isSamePtr(p1, p5)
764 && copyCompatibleType(t1, x.Type)
765 && t1.Size() == t5.Size()
766 && disjoint(p5, t5.Size(), p2, t2.Size())
767 && disjoint(p5, t5.Size(), p3, t3.Size())
768 && disjoint(p5, t5.Size(), p4, t4.Size())
769 => x
770
771 // Pass constants through math.Float{32,64}bits and math.Float{32,64}frombits
772 (Load <t1> p1 (Store {t2} p2 (Const64 [x]) _)) && isSamePtr(p1,p2) && t2.Size() == 8 && is64BitFloat(t1) && !math.IsNaN(math.Float64frombits(uint64(x))) => (Const64F [math.Float64frombits(uint64(x))])
773 (Load <t1> p1 (Store {t2} p2 (Const32 [x]) _)) && isSamePtr(p1,p2) && t2.Size() == 4 && is32BitFloat(t1) && !math.IsNaN(float64(math.Float32frombits(uint32(x)))) => (Const32F [math.Float32frombits(uint32(x))])
774 (Load <t1> p1 (Store {t2} p2 (Const64F [x]) _)) && isSamePtr(p1,p2) && t2.Size() == 8 && is64BitInt(t1) => (Const64 [int64(math.Float64bits(x))])
775 (Load <t1> p1 (Store {t2} p2 (Const32F [x]) _)) && isSamePtr(p1,p2) && t2.Size() == 4 && is32BitInt(t1) => (Const32 [int32(math.Float32bits(x))])
776
777 // Float Loads up to Zeros so they can be constant folded.
778 (Load <t1> op:(OffPtr [o1] p1)
779 (Store {t2} p2 _
780 mem:(Zero [n] p3 _)))
781 && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p3)
782 && CanSSA(t1)
783 && disjoint(op, t1.Size(), p2, t2.Size())
784 => @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p3) mem)
785 (Load <t1> op:(OffPtr [o1] p1)
786 (Store {t2} p2 _
787 (Store {t3} p3 _
788 mem:(Zero [n] p4 _))))
789 && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p4)
790 && CanSSA(t1)
791 && disjoint(op, t1.Size(), p2, t2.Size())
792 && disjoint(op, t1.Size(), p3, t3.Size())
793 => @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p4) mem)
794 (Load <t1> op:(OffPtr [o1] p1)
795 (Store {t2} p2 _
796 (Store {t3} p3 _
797 (Store {t4} p4 _
798 mem:(Zero [n] p5 _)))))
799 && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p5)
800 && CanSSA(t1)
801 && disjoint(op, t1.Size(), p2, t2.Size())
802 && disjoint(op, t1.Size(), p3, t3.Size())
803 && disjoint(op, t1.Size(), p4, t4.Size())
804 => @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p5) mem)
805 (Load <t1> op:(OffPtr [o1] p1)
806 (Store {t2} p2 _
807 (Store {t3} p3 _
808 (Store {t4} p4 _
809 (Store {t5} p5 _
810 mem:(Zero [n] p6 _))))))
811 && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p6)
812 && CanSSA(t1)
813 && disjoint(op, t1.Size(), p2, t2.Size())
814 && disjoint(op, t1.Size(), p3, t3.Size())
815 && disjoint(op, t1.Size(), p4, t4.Size())
816 && disjoint(op, t1.Size(), p5, t5.Size())
817 => @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p6) mem)
818
819 // Zero to Load forwarding.
820 (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
821 && t1.IsBoolean()
822 && isSamePtr(p1, p2)
823 && n >= o + 1
824 => (ConstBool [false])
825 (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
826 && is8BitInt(t1)
827 && isSamePtr(p1, p2)
828 && n >= o + 1
829 => (Const8 [0])
830 (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
831 && is16BitInt(t1)
832 && isSamePtr(p1, p2)
833 && n >= o + 2
834 => (Const16 [0])
835 (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
836 && is32BitInt(t1)
837 && isSamePtr(p1, p2)
838 && n >= o + 4
839 => (Const32 [0])
840 (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
841 && is64BitInt(t1)
842 && isSamePtr(p1, p2)
843 && n >= o + 8
844 => (Const64 [0])
845 (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
846 && is32BitFloat(t1)
847 && isSamePtr(p1, p2)
848 && n >= o + 4
849 => (Const32F [0])
850 (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
851 && is64BitFloat(t1)
852 && isSamePtr(p1, p2)
853 && n >= o + 8
854 => (Const64F [0])
855
856 // Eliminate stores of values that have just been loaded from the same location.
857 // We also handle the common case where there are some intermediate stores.
858 (Store {t1} p1 (Load <t2> p2 mem) mem)
859 && isSamePtr(p1, p2)
860 && t2.Size() == t1.Size()
861 => mem
862 (Store {t1} p1 (Load <t2> p2 oldmem) mem:(Store {t3} p3 _ oldmem))
863 && isSamePtr(p1, p2)
864 && t2.Size() == t1.Size()
865 && disjoint(p1, t1.Size(), p3, t3.Size())
866 => mem
867 (Store {t1} p1 (Load <t2> p2 oldmem) mem:(Store {t3} p3 _ (Store {t4} p4 _ oldmem)))
868 && isSamePtr(p1, p2)
869 && t2.Size() == t1.Size()
870 && disjoint(p1, t1.Size(), p3, t3.Size())
871 && disjoint(p1, t1.Size(), p4, t4.Size())
872 => mem
873 (Store {t1} p1 (Load <t2> p2 oldmem) mem:(Store {t3} p3 _ (Store {t4} p4 _ (Store {t5} p5 _ oldmem))))
874 && isSamePtr(p1, p2)
875 && t2.Size() == t1.Size()
876 && disjoint(p1, t1.Size(), p3, t3.Size())
877 && disjoint(p1, t1.Size(), p4, t4.Size())
878 && disjoint(p1, t1.Size(), p5, t5.Size())
879 => mem
880
881 // Don't Store zeros to cleared variables.
882 (Store {t} (OffPtr [o] p1) x mem:(Zero [n] p2 _))
883 && isConstZero(x)
884 && o >= 0 && t.Size() + o <= n && isSamePtr(p1, p2)
885 => mem
886 (Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Zero [n] p3 _)))
887 && isConstZero(x)
888 && o1 >= 0 && t1.Size() + o1 <= n && isSamePtr(p1, p3)
889 && disjoint(op, t1.Size(), p2, t2.Size())
890 => mem
891 (Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Store {t3} p3 _ (Zero [n] p4 _))))
892 && isConstZero(x)
893 && o1 >= 0 && t1.Size() + o1 <= n && isSamePtr(p1, p4)
894 && disjoint(op, t1.Size(), p2, t2.Size())
895 && disjoint(op, t1.Size(), p3, t3.Size())
896 => mem
897 (Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 _ (Zero [n] p5 _)))))
898 && isConstZero(x)
899 && o1 >= 0 && t1.Size() + o1 <= n && isSamePtr(p1, p5)
900 && disjoint(op, t1.Size(), p2, t2.Size())
901 && disjoint(op, t1.Size(), p3, t3.Size())
902 && disjoint(op, t1.Size(), p4, t4.Size())
903 => mem
904
905 // Collapse OffPtr
906 (OffPtr (OffPtr p [y]) [x]) => (OffPtr p [x+y])
907 (OffPtr p [0]) && v.Type.Compare(p.Type) == types.CMPeq => p
908
909 // indexing operations
910 // Note: bounds check has already been done
911 (PtrIndex <t> ptr idx) && config.PtrSize == 4 && is32Bit(t.Elem().Size()) => (AddPtr ptr (Mul32 <typ.Int> idx (Const32 <typ.Int> [int32(t.Elem().Size())])))
912 (PtrIndex <t> ptr idx) && config.PtrSize == 8 => (AddPtr ptr (Mul64 <typ.Int> idx (Const64 <typ.Int> [t.Elem().Size()])))
913
914 // struct operations
915 (StructSelect [i] x:(StructMake ___)) => x.Args[i]
916 (Load <t> _ _) && t.IsStruct() && CanSSA(t) => rewriteStructLoad(v)
917 (Store _ (StructMake ___) _) => rewriteStructStore(v)
918
919 (StructSelect [i] x:(Load <t> ptr mem)) && !CanSSA(t) =>
920 @x.Block (Load <v.Type> (OffPtr <v.Type.PtrTo()> [t.FieldOff(int(i))] ptr) mem)
921
922 // Putting struct{*byte} and similar into direct interfaces.
923 (IMake _typ (StructMake val)) => (IMake _typ val)
924 (StructSelect [0] (IData x)) => (IData x)
925
926 // un-SSAable values use mem->mem copies
927 (Store {t} dst (Load src mem) mem) && !CanSSA(t) =>
928 (Move {t} [t.Size()] dst src mem)
929 (Store {t} dst (Load src mem) (VarDef {x} mem)) && !CanSSA(t) =>
930 (Move {t} [t.Size()] dst src (VarDef {x} mem))
931
932 // array ops
933 (ArraySelect (ArrayMake1 x)) => x
934
935 (Load <t> _ _) && t.IsArray() && t.NumElem() == 0 =>
936 (ArrayMake0)
937
938 (Load <t> ptr mem) && t.IsArray() && t.NumElem() == 1 && CanSSA(t) =>
939 (ArrayMake1 (Load <t.Elem()> ptr mem))
940
941 (Store _ (ArrayMake0) mem) => mem
942 (Store dst (ArrayMake1 e) mem) => (Store {e.Type} dst e mem)
943
944 // Putting [1]*byte and similar into direct interfaces.
945 (IMake _typ (ArrayMake1 val)) => (IMake _typ val)
946 (ArraySelect [0] (IData x)) => (IData x)
947
948 // string ops
949 // Decomposing StringMake and lowering of StringPtr and StringLen
950 // happens in a later pass, dec, so that these operations are available
951 // to other passes for optimizations.
952 (StringPtr (StringMake (Addr <t> {s} base) _)) => (Addr <t> {s} base)
953 (StringLen (StringMake _ (Const64 <t> [c]))) => (Const64 <t> [c])
954 (ConstString {str}) && config.PtrSize == 4 && str == "" =>
955 (StringMake (ConstNil) (Const32 <typ.Int> [0]))
956 (ConstString {str}) && config.PtrSize == 8 && str == "" =>
957 (StringMake (ConstNil) (Const64 <typ.Int> [0]))
958 (ConstString {str}) && config.PtrSize == 4 && str != "" =>
959 (StringMake
960 (Addr <typ.BytePtr> {fe.StringData(str)}
961 (SB))
962 (Const32 <typ.Int> [int32(len(str))]))
963 (ConstString {str}) && config.PtrSize == 8 && str != "" =>
964 (StringMake
965 (Addr <typ.BytePtr> {fe.StringData(str)}
966 (SB))
967 (Const64 <typ.Int> [int64(len(str))]))
968
969 // slice ops
970 // Only a few slice rules are provided here. See dec.rules for
971 // a more comprehensive set.
972 (SliceLen (SliceMake _ (Const64 <t> [c]) _)) => (Const64 <t> [c])
973 (SliceCap (SliceMake _ _ (Const64 <t> [c]))) => (Const64 <t> [c])
974 (SliceLen (SliceMake _ (Const32 <t> [c]) _)) => (Const32 <t> [c])
975 (SliceCap (SliceMake _ _ (Const32 <t> [c]))) => (Const32 <t> [c])
976 (SlicePtr (SliceMake (SlicePtr x) _ _)) => (SlicePtr x)
977 (SliceLen (SliceMake _ (SliceLen x) _)) => (SliceLen x)
978 (SliceCap (SliceMake _ _ (SliceCap x))) => (SliceCap x)
979 (SliceCap (SliceMake _ _ (SliceLen x))) => (SliceLen x)
980 (ConstSlice) && config.PtrSize == 4 =>
981 (SliceMake
982 (ConstNil <v.Type.Elem().PtrTo()>)
983 (Const32 <typ.Int> [0])
984 (Const32 <typ.Int> [0]))
985 (ConstSlice) && config.PtrSize == 8 =>
986 (SliceMake
987 (ConstNil <v.Type.Elem().PtrTo()>)
988 (Const64 <typ.Int> [0])
989 (Const64 <typ.Int> [0]))
990
991 // interface ops
992 (ConstInterface) =>
993 (IMake
994 (ConstNil <typ.Uintptr>)
995 (ConstNil <typ.BytePtr>))
996
997 (NilCheck ptr:(GetG mem) mem) => ptr
998
999 (If (Not cond) yes no) => (If cond no yes)
1000 (If (ConstBool [c]) yes no) && c => (First yes no)
1001 (If (ConstBool [c]) yes no) && !c => (First no yes)
1002
1003 (Phi <t> nx:(Not x) ny:(Not y)) && nx.Uses == 1 && ny.Uses == 1 => (Not (Phi <t> x y))
1004
1005 // Get rid of Convert ops for pointer arithmetic on unsafe.Pointer.
1006 (Convert (Add(64|32) (Convert ptr mem) off) mem) => (AddPtr ptr off)
1007 (Convert (Convert ptr mem) mem) => ptr
1008 // Note: it is important that the target rewrite is ptr+(off1+off2), not (ptr+off1)+off2.
1009 // We must ensure that no intermediate computations are invalid pointers.
1010 (Convert a:(Add(64|32) (Add(64|32) (Convert ptr mem) off1) off2) mem) => (AddPtr ptr (Add(64|32) <a.Type> off1 off2))
1011
1012 // strength reduction of divide by a constant.
1013 // See ../magic.go for a detailed description of these algorithms.
1014
1015 // Unsigned divide by power of 2. Strength reduce to a shift.
1016 (Div8u n (Const8 [c])) && isPowerOfTwo(c) => (Rsh8Ux64 n (Const64 <typ.UInt64> [log8(c)]))
1017 (Div16u n (Const16 [c])) && isPowerOfTwo(c) => (Rsh16Ux64 n (Const64 <typ.UInt64> [log16(c)]))
1018 (Div32u n (Const32 [c])) && isPowerOfTwo(c) => (Rsh32Ux64 n (Const64 <typ.UInt64> [log32(c)]))
1019 (Div64u n (Const64 [c])) && isPowerOfTwo(c) => (Rsh64Ux64 n (Const64 <typ.UInt64> [log64(c)]))
1020 (Div64u n (Const64 [-1<<63])) => (Rsh64Ux64 n (Const64 <typ.UInt64> [63]))
1021
1022 // Signed non-negative divide by power of 2.
1023 (Div8 n (Const8 [c])) && isNonNegative(n) && isPowerOfTwo(c) => (Rsh8Ux64 n (Const64 <typ.UInt64> [log8(c)]))
1024 (Div16 n (Const16 [c])) && isNonNegative(n) && isPowerOfTwo(c) => (Rsh16Ux64 n (Const64 <typ.UInt64> [log16(c)]))
1025 (Div32 n (Const32 [c])) && isNonNegative(n) && isPowerOfTwo(c) => (Rsh32Ux64 n (Const64 <typ.UInt64> [log32(c)]))
1026 (Div64 n (Const64 [c])) && isNonNegative(n) && isPowerOfTwo(c) => (Rsh64Ux64 n (Const64 <typ.UInt64> [log64(c)]))
1027 (Div64 n (Const64 [-1<<63])) && isNonNegative(n) => (Const64 [0])
1028
1029 // Unsigned divide, not a power of 2. Strength reduce to a multiply.
1030 // For 8-bit divides, we just do a direct 9-bit by 8-bit multiply.
1031 (Div8u x (Const8 [c])) && umagicOK8(c) =>
1032 (Trunc32to8
1033 (Rsh32Ux64 <typ.UInt32>
1034 (Mul32 <typ.UInt32>
1035 (Const32 <typ.UInt32> [int32(1<<8+umagic8(c).m)])
1036 (ZeroExt8to32 x))
1037 (Const64 <typ.UInt64> [8+umagic8(c).s])))
1038
1039 // For 16-bit divides on 64-bit machines, we do a direct 17-bit by 16-bit multiply.
1040 (Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 8 =>
1041 (Trunc64to16
1042 (Rsh64Ux64 <typ.UInt64>
1043 (Mul64 <typ.UInt64>
1044 (Const64 <typ.UInt64> [int64(1<<16+umagic16(c).m)])
1045 (ZeroExt16to64 x))
1046 (Const64 <typ.UInt64> [16+umagic16(c).s])))
1047
1048 // For 16-bit divides on 32-bit machines
1049 (Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 4 && umagic16(c).m&1 == 0 =>
1050 (Trunc32to16
1051 (Rsh32Ux64 <typ.UInt32>
1052 (Mul32 <typ.UInt32>
1053 (Const32 <typ.UInt32> [int32(1<<15+umagic16(c).m/2)])
1054 (ZeroExt16to32 x))
1055 (Const64 <typ.UInt64> [16+umagic16(c).s-1])))
1056 (Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 4 && c&1 == 0 =>
1057 (Trunc32to16
1058 (Rsh32Ux64 <typ.UInt32>
1059 (Mul32 <typ.UInt32>
1060 (Const32 <typ.UInt32> [int32(1<<15+(umagic16(c).m+1)/2)])
1061 (Rsh32Ux64 <typ.UInt32> (ZeroExt16to32 x) (Const64 <typ.UInt64> [1])))
1062 (Const64 <typ.UInt64> [16+umagic16(c).s-2])))
1063 (Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 4 && config.useAvg =>
1064 (Trunc32to16
1065 (Rsh32Ux64 <typ.UInt32>
1066 (Avg32u
1067 (Lsh32x64 <typ.UInt32> (ZeroExt16to32 x) (Const64 <typ.UInt64> [16]))
1068 (Mul32 <typ.UInt32>
1069 (Const32 <typ.UInt32> [int32(umagic16(c).m)])
1070 (ZeroExt16to32 x)))
1071 (Const64 <typ.UInt64> [16+umagic16(c).s-1])))
1072
1073 // For 32-bit divides on 32-bit machines
1074 (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 4 && umagic32(c).m&1 == 0 && config.useHmul =>
1075 (Rsh32Ux64 <typ.UInt32>
1076 (Hmul32u <typ.UInt32>
1077 (Const32 <typ.UInt32> [int32(1<<31+umagic32(c).m/2)])
1078 x)
1079 (Const64 <typ.UInt64> [umagic32(c).s-1]))
1080 (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 4 && c&1 == 0 && config.useHmul =>
1081 (Rsh32Ux64 <typ.UInt32>
1082 (Hmul32u <typ.UInt32>
1083 (Const32 <typ.UInt32> [int32(1<<31+(umagic32(c).m+1)/2)])
1084 (Rsh32Ux64 <typ.UInt32> x (Const64 <typ.UInt64> [1])))
1085 (Const64 <typ.UInt64> [umagic32(c).s-2]))
1086 (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 4 && config.useAvg && config.useHmul =>
1087 (Rsh32Ux64 <typ.UInt32>
1088 (Avg32u
1089 x
1090 (Hmul32u <typ.UInt32>
1091 (Const32 <typ.UInt32> [int32(umagic32(c).m)])
1092 x))
1093 (Const64 <typ.UInt64> [umagic32(c).s-1]))
1094
1095 // For 32-bit divides on 64-bit machines
1096 // We'll use a regular (non-hi) multiply for this case.
1097 (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 8 && umagic32(c).m&1 == 0 =>
1098 (Trunc64to32
1099 (Rsh64Ux64 <typ.UInt64>
1100 (Mul64 <typ.UInt64>
1101 (Const64 <typ.UInt64> [int64(1<<31+umagic32(c).m/2)])
1102 (ZeroExt32to64 x))
1103 (Const64 <typ.UInt64> [32+umagic32(c).s-1])))
1104 (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 8 && c&1 == 0 =>
1105 (Trunc64to32
1106 (Rsh64Ux64 <typ.UInt64>
1107 (Mul64 <typ.UInt64>
1108 (Const64 <typ.UInt64> [int64(1<<31+(umagic32(c).m+1)/2)])
1109 (Rsh64Ux64 <typ.UInt64> (ZeroExt32to64 x) (Const64 <typ.UInt64> [1])))
1110 (Const64 <typ.UInt64> [32+umagic32(c).s-2])))
1111 (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 8 && config.useAvg =>
1112 (Trunc64to32
1113 (Rsh64Ux64 <typ.UInt64>
1114 (Avg64u
1115 (Lsh64x64 <typ.UInt64> (ZeroExt32to64 x) (Const64 <typ.UInt64> [32]))
1116 (Mul64 <typ.UInt64>
1117 (Const64 <typ.UInt32> [int64(umagic32(c).m)])
1118 (ZeroExt32to64 x)))
1119 (Const64 <typ.UInt64> [32+umagic32(c).s-1])))
1120
1121 // For unsigned 64-bit divides on 32-bit machines,
1122 // if the constant fits in 16 bits (so that the last term
1123 // fits in 32 bits), convert to three 32-bit divides by a constant.
1124 //
1125 // If 1<<32 = Q * c + R
1126 // and x = hi << 32 + lo
1127 //
1128 // Then x = (hi/c*c + hi%c) << 32 + lo
1129 // = hi/c*c<<32 + hi%c<<32 + lo
1130 // = hi/c*c<<32 + (hi%c)*(Q*c+R) + lo/c*c + lo%c
1131 // = hi/c*c<<32 + (hi%c)*Q*c + lo/c*c + (hi%c*R+lo%c)
1132 // and x / c = (hi/c)<<32 + (hi%c)*Q + lo/c + (hi%c*R+lo%c)/c
1133 (Div64u x (Const64 [c])) && c > 0 && c <= 0xFFFF && umagicOK32(int32(c)) && config.RegSize == 4 && config.useHmul =>
1134 (Add64
1135 (Add64 <typ.UInt64>
1136 (Add64 <typ.UInt64>
1137 (Lsh64x64 <typ.UInt64>
1138 (ZeroExt32to64
1139 (Div32u <typ.UInt32>
1140 (Trunc64to32 <typ.UInt32> (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [32])))
1141 (Const32 <typ.UInt32> [int32(c)])))
1142 (Const64 <typ.UInt64> [32]))
1143 (ZeroExt32to64 (Div32u <typ.UInt32> (Trunc64to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(c)]))))
1144 (Mul64 <typ.UInt64>
1145 (ZeroExt32to64 <typ.UInt64>
1146 (Mod32u <typ.UInt32>
1147 (Trunc64to32 <typ.UInt32> (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [32])))
1148 (Const32 <typ.UInt32> [int32(c)])))
1149 (Const64 <typ.UInt64> [int64((1<<32)/c)])))
1150 (ZeroExt32to64
1151 (Div32u <typ.UInt32>
1152 (Add32 <typ.UInt32>
1153 (Mod32u <typ.UInt32> (Trunc64to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(c)]))
1154 (Mul32 <typ.UInt32>
1155 (Mod32u <typ.UInt32>
1156 (Trunc64to32 <typ.UInt32> (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [32])))
1157 (Const32 <typ.UInt32> [int32(c)]))
1158 (Const32 <typ.UInt32> [int32((1<<32)%c)])))
1159 (Const32 <typ.UInt32> [int32(c)]))))
1160
1161 // For 64-bit divides on 64-bit machines
1162 // (64-bit divides on 32-bit machines are lowered to a runtime call by the walk pass.)
1163 (Div64u x (Const64 [c])) && umagicOK64(c) && config.RegSize == 8 && umagic64(c).m&1 == 0 && config.useHmul =>
1164 (Rsh64Ux64 <typ.UInt64>
1165 (Hmul64u <typ.UInt64>
1166 (Const64 <typ.UInt64> [int64(1<<63+umagic64(c).m/2)])
1167 x)
1168 (Const64 <typ.UInt64> [umagic64(c).s-1]))
1169 (Div64u x (Const64 [c])) && umagicOK64(c) && config.RegSize == 8 && c&1 == 0 && config.useHmul =>
1170 (Rsh64Ux64 <typ.UInt64>
1171 (Hmul64u <typ.UInt64>
1172 (Const64 <typ.UInt64> [int64(1<<63+(umagic64(c).m+1)/2)])
1173 (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [1])))
1174 (Const64 <typ.UInt64> [umagic64(c).s-2]))
1175 (Div64u x (Const64 [c])) && umagicOK64(c) && config.RegSize == 8 && config.useAvg && config.useHmul =>
1176 (Rsh64Ux64 <typ.UInt64>
1177 (Avg64u
1178 x
1179 (Hmul64u <typ.UInt64>
1180 (Const64 <typ.UInt64> [int64(umagic64(c).m)])
1181 x))
1182 (Const64 <typ.UInt64> [umagic64(c).s-1]))
1183
1184 // Signed divide by a negative constant. Rewrite to divide by a positive constant.
1185 (Div8 <t> n (Const8 [c])) && c < 0 && c != -1<<7 => (Neg8 (Div8 <t> n (Const8 <t> [-c])))
1186 (Div16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 => (Neg16 (Div16 <t> n (Const16 <t> [-c])))
1187 (Div32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 => (Neg32 (Div32 <t> n (Const32 <t> [-c])))
1188 (Div64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 => (Neg64 (Div64 <t> n (Const64 <t> [-c])))
1189
1190 // Dividing by the most-negative number. Result is always 0 except
1191 // if the input is also the most-negative number.
1192 // We can detect that using the sign bit of x & -x.
1193 (Div8 <t> x (Const8 [-1<<7 ])) => (Rsh8Ux64 (And8 <t> x (Neg8 <t> x)) (Const64 <typ.UInt64> [7 ]))
1194 (Div16 <t> x (Const16 [-1<<15])) => (Rsh16Ux64 (And16 <t> x (Neg16 <t> x)) (Const64 <typ.UInt64> [15]))
1195 (Div32 <t> x (Const32 [-1<<31])) => (Rsh32Ux64 (And32 <t> x (Neg32 <t> x)) (Const64 <typ.UInt64> [31]))
1196 (Div64 <t> x (Const64 [-1<<63])) => (Rsh64Ux64 (And64 <t> x (Neg64 <t> x)) (Const64 <typ.UInt64> [63]))
1197
1198 // Signed divide by power of 2.
1199 // n / c = n >> log(c) if n >= 0
1200 // = (n+c-1) >> log(c) if n < 0
1201 // We conditionally add c-1 by adding n>>63>>(64-log(c)) (first shift signed, second shift unsigned).
1202 (Div8 <t> n (Const8 [c])) && isPowerOfTwo(c) =>
1203 (Rsh8x64
1204 (Add8 <t> n (Rsh8Ux64 <t> (Rsh8x64 <t> n (Const64 <typ.UInt64> [ 7])) (Const64 <typ.UInt64> [int64( 8-log8(c))])))
1205 (Const64 <typ.UInt64> [int64(log8(c))]))
1206 (Div16 <t> n (Const16 [c])) && isPowerOfTwo(c) =>
1207 (Rsh16x64
1208 (Add16 <t> n (Rsh16Ux64 <t> (Rsh16x64 <t> n (Const64 <typ.UInt64> [15])) (Const64 <typ.UInt64> [int64(16-log16(c))])))
1209 (Const64 <typ.UInt64> [int64(log16(c))]))
1210 (Div32 <t> n (Const32 [c])) && isPowerOfTwo(c) =>
1211 (Rsh32x64
1212 (Add32 <t> n (Rsh32Ux64 <t> (Rsh32x64 <t> n (Const64 <typ.UInt64> [31])) (Const64 <typ.UInt64> [int64(32-log32(c))])))
1213 (Const64 <typ.UInt64> [int64(log32(c))]))
1214 (Div64 <t> n (Const64 [c])) && isPowerOfTwo(c) =>
1215 (Rsh64x64
1216 (Add64 <t> n (Rsh64Ux64 <t> (Rsh64x64 <t> n (Const64 <typ.UInt64> [63])) (Const64 <typ.UInt64> [int64(64-log64(c))])))
1217 (Const64 <typ.UInt64> [int64(log64(c))]))
1218
1219 // Signed divide, not a power of 2. Strength reduce to a multiply.
1220 (Div8 <t> x (Const8 [c])) && smagicOK8(c) =>
1221 (Sub8 <t>
1222 (Rsh32x64 <t>
1223 (Mul32 <typ.UInt32>
1224 (Const32 <typ.UInt32> [int32(smagic8(c).m)])
1225 (SignExt8to32 x))
1226 (Const64 <typ.UInt64> [8+smagic8(c).s]))
1227 (Rsh32x64 <t>
1228 (SignExt8to32 x)
1229 (Const64 <typ.UInt64> [31])))
1230 (Div16 <t> x (Const16 [c])) && smagicOK16(c) =>
1231 (Sub16 <t>
1232 (Rsh32x64 <t>
1233 (Mul32 <typ.UInt32>
1234 (Const32 <typ.UInt32> [int32(smagic16(c).m)])
1235 (SignExt16to32 x))
1236 (Const64 <typ.UInt64> [16+smagic16(c).s]))
1237 (Rsh32x64 <t>
1238 (SignExt16to32 x)
1239 (Const64 <typ.UInt64> [31])))
1240 (Div32 <t> x (Const32 [c])) && smagicOK32(c) && config.RegSize == 8 =>
1241 (Sub32 <t>
1242 (Rsh64x64 <t>
1243 (Mul64 <typ.UInt64>
1244 (Const64 <typ.UInt64> [int64(smagic32(c).m)])
1245 (SignExt32to64 x))
1246 (Const64 <typ.UInt64> [32+smagic32(c).s]))
1247 (Rsh64x64 <t>
1248 (SignExt32to64 x)
1249 (Const64 <typ.UInt64> [63])))
1250 (Div32 <t> x (Const32 [c])) && smagicOK32(c) && config.RegSize == 4 && smagic32(c).m&1 == 0 && config.useHmul =>
1251 (Sub32 <t>
1252 (Rsh32x64 <t>
1253 (Hmul32 <t>
1254 (Const32 <typ.UInt32> [int32(smagic32(c).m/2)])
1255 x)
1256 (Const64 <typ.UInt64> [smagic32(c).s-1]))
1257 (Rsh32x64 <t>
1258 x
1259 (Const64 <typ.UInt64> [31])))
1260 (Div32 <t> x (Const32 [c])) && smagicOK32(c) && config.RegSize == 4 && smagic32(c).m&1 != 0 && config.useHmul =>
1261 (Sub32 <t>
1262 (Rsh32x64 <t>
1263 (Add32 <t>
1264 (Hmul32 <t>
1265 (Const32 <typ.UInt32> [int32(smagic32(c).m)])
1266 x)
1267 x)
1268 (Const64 <typ.UInt64> [smagic32(c).s]))
1269 (Rsh32x64 <t>
1270 x
1271 (Const64 <typ.UInt64> [31])))
1272 (Div64 <t> x (Const64 [c])) && smagicOK64(c) && smagic64(c).m&1 == 0 && config.useHmul =>
1273 (Sub64 <t>
1274 (Rsh64x64 <t>
1275 (Hmul64 <t>
1276 (Const64 <typ.UInt64> [int64(smagic64(c).m/2)])
1277 x)
1278 (Const64 <typ.UInt64> [smagic64(c).s-1]))
1279 (Rsh64x64 <t>
1280 x
1281 (Const64 <typ.UInt64> [63])))
1282 (Div64 <t> x (Const64 [c])) && smagicOK64(c) && smagic64(c).m&1 != 0 && config.useHmul =>
1283 (Sub64 <t>
1284 (Rsh64x64 <t>
1285 (Add64 <t>
1286 (Hmul64 <t>
1287 (Const64 <typ.UInt64> [int64(smagic64(c).m)])
1288 x)
1289 x)
1290 (Const64 <typ.UInt64> [smagic64(c).s]))
1291 (Rsh64x64 <t>
1292 x
1293 (Const64 <typ.UInt64> [63])))
1294
1295 // Unsigned mod by power of 2 constant.
1296 (Mod8u <t> n (Const8 [c])) && isPowerOfTwo(c) => (And8 n (Const8 <t> [c-1]))
1297 (Mod16u <t> n (Const16 [c])) && isPowerOfTwo(c) => (And16 n (Const16 <t> [c-1]))
1298 (Mod32u <t> n (Const32 [c])) && isPowerOfTwo(c) => (And32 n (Const32 <t> [c-1]))
1299 (Mod64u <t> n (Const64 [c])) && isPowerOfTwo(c) => (And64 n (Const64 <t> [c-1]))
1300 (Mod64u <t> n (Const64 [-1<<63])) => (And64 n (Const64 <t> [1<<63-1]))
1301
1302 // Signed non-negative mod by power of 2 constant.
1303 (Mod8 <t> n (Const8 [c])) && isNonNegative(n) && isPowerOfTwo(c) => (And8 n (Const8 <t> [c-1]))
1304 (Mod16 <t> n (Const16 [c])) && isNonNegative(n) && isPowerOfTwo(c) => (And16 n (Const16 <t> [c-1]))
1305 (Mod32 <t> n (Const32 [c])) && isNonNegative(n) && isPowerOfTwo(c) => (And32 n (Const32 <t> [c-1]))
1306 (Mod64 <t> n (Const64 [c])) && isNonNegative(n) && isPowerOfTwo(c) => (And64 n (Const64 <t> [c-1]))
1307 (Mod64 n (Const64 [-1<<63])) && isNonNegative(n) => n
1308
1309 // Signed mod by negative constant.
1310 (Mod8 <t> n (Const8 [c])) && c < 0 && c != -1<<7 => (Mod8 <t> n (Const8 <t> [-c]))
1311 (Mod16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 => (Mod16 <t> n (Const16 <t> [-c]))
1312 (Mod32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 => (Mod32 <t> n (Const32 <t> [-c]))
1313 (Mod64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 => (Mod64 <t> n (Const64 <t> [-c]))
1314
1315 // All other mods by constants, do A%B = A-(A/B*B).
1316 // This implements % with two * and a bunch of ancillary ops.
1317 // One of the * is free if the user's code also computes A/B.
1318 (Mod8 <t> x (Const8 [c])) && x.Op != OpConst8 && (c > 0 || c == -1<<7)
1319 => (Sub8 x (Mul8 <t> (Div8 <t> x (Const8 <t> [c])) (Const8 <t> [c])))
1320 (Mod16 <t> x (Const16 [c])) && x.Op != OpConst16 && (c > 0 || c == -1<<15)
1321 => (Sub16 x (Mul16 <t> (Div16 <t> x (Const16 <t> [c])) (Const16 <t> [c])))
1322 (Mod32 <t> x (Const32 [c])) && x.Op != OpConst32 && (c > 0 || c == -1<<31)
1323 => (Sub32 x (Mul32 <t> (Div32 <t> x (Const32 <t> [c])) (Const32 <t> [c])))
1324 (Mod64 <t> x (Const64 [c])) && x.Op != OpConst64 && (c > 0 || c == -1<<63)
1325 => (Sub64 x (Mul64 <t> (Div64 <t> x (Const64 <t> [c])) (Const64 <t> [c])))
1326 (Mod8u <t> x (Const8 [c])) && x.Op != OpConst8 && c > 0 && umagicOK8( c)
1327 => (Sub8 x (Mul8 <t> (Div8u <t> x (Const8 <t> [c])) (Const8 <t> [c])))
1328 (Mod16u <t> x (Const16 [c])) && x.Op != OpConst16 && c > 0 && umagicOK16(c)
1329 => (Sub16 x (Mul16 <t> (Div16u <t> x (Const16 <t> [c])) (Const16 <t> [c])))
1330 (Mod32u <t> x (Const32 [c])) && x.Op != OpConst32 && c > 0 && umagicOK32(c)
1331 => (Sub32 x (Mul32 <t> (Div32u <t> x (Const32 <t> [c])) (Const32 <t> [c])))
1332 (Mod64u <t> x (Const64 [c])) && x.Op != OpConst64 && c > 0 && umagicOK64(c)
1333 => (Sub64 x (Mul64 <t> (Div64u <t> x (Const64 <t> [c])) (Const64 <t> [c])))
1334
1335 // For architectures without rotates on less than 32-bits, promote these checks to 32-bit.
1336 (Eq8 (Mod8u x (Const8 [c])) (Const8 [0])) && x.Op != OpConst8 && udivisibleOK8(c) && !hasSmallRotate(config) =>
1337 (Eq32 (Mod32u <typ.UInt32> (ZeroExt8to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(uint8(c))])) (Const32 <typ.UInt32> [0]))
1338 (Eq16 (Mod16u x (Const16 [c])) (Const16 [0])) && x.Op != OpConst16 && udivisibleOK16(c) && !hasSmallRotate(config) =>
1339 (Eq32 (Mod32u <typ.UInt32> (ZeroExt16to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(uint16(c))])) (Const32 <typ.UInt32> [0]))
1340 (Eq8 (Mod8 x (Const8 [c])) (Const8 [0])) && x.Op != OpConst8 && sdivisibleOK8(c) && !hasSmallRotate(config) =>
1341 (Eq32 (Mod32 <typ.Int32> (SignExt8to32 <typ.Int32> x) (Const32 <typ.Int32> [int32(c)])) (Const32 <typ.Int32> [0]))
1342 (Eq16 (Mod16 x (Const16 [c])) (Const16 [0])) && x.Op != OpConst16 && sdivisibleOK16(c) && !hasSmallRotate(config) =>
1343 (Eq32 (Mod32 <typ.Int32> (SignExt16to32 <typ.Int32> x) (Const32 <typ.Int32> [int32(c)])) (Const32 <typ.Int32> [0]))
1344
1345 // Divisibility checks x%c == 0 convert to multiply and rotate.
1346 // Note, x%c == 0 is rewritten as x == c*(x/c) during the opt pass
1347 // where (x/c) is performed using multiplication with magic constants.
1348 // To rewrite x%c == 0 requires pattern matching the rewritten expression
1349 // and checking that the division by the same constant wasn't already calculated.
1350 // This check is made by counting uses of the magic constant multiplication.
1351 // Note that if there were an intermediate opt pass, this rule could be applied
1352 // directly on the Div op and magic division rewrites could be delayed to late opt.
1353
1354 // Unsigned divisibility checks convert to multiply and rotate.
1355 (Eq8 x (Mul8 (Const8 [c])
1356 (Trunc32to8
1357 (Rsh32Ux64
1358 mul:(Mul32
1359 (Const32 [m])
1360 (ZeroExt8to32 x))
1361 (Const64 [s])))
1362 )
1363 )
1364 && v.Block.Func.pass.name != "opt" && mul.Uses == 1
1365 && m == int32(1<<8+umagic8(c).m) && s == 8+umagic8(c).s
1366 && x.Op != OpConst8 && udivisibleOK8(c)
1367 => (Leq8U
1368 (RotateLeft8 <typ.UInt8>
1369 (Mul8 <typ.UInt8>
1370 (Const8 <typ.UInt8> [int8(udivisible8(c).m)])
1371 x)
1372 (Const8 <typ.UInt8> [int8(8-udivisible8(c).k)])
1373 )
1374 (Const8 <typ.UInt8> [int8(udivisible8(c).max)])
1375 )
1376
1377 (Eq16 x (Mul16 (Const16 [c])
1378 (Trunc64to16
1379 (Rsh64Ux64
1380 mul:(Mul64
1381 (Const64 [m])
1382 (ZeroExt16to64 x))
1383 (Const64 [s])))
1384 )
1385 )
1386 && v.Block.Func.pass.name != "opt" && mul.Uses == 1
1387 && m == int64(1<<16+umagic16(c).m) && s == 16+umagic16(c).s
1388 && x.Op != OpConst16 && udivisibleOK16(c)
1389 => (Leq16U
1390 (RotateLeft16 <typ.UInt16>
1391 (Mul16 <typ.UInt16>
1392 (Const16 <typ.UInt16> [int16(udivisible16(c).m)])
1393 x)
1394 (Const16 <typ.UInt16> [int16(16-udivisible16(c).k)])
1395 )
1396 (Const16 <typ.UInt16> [int16(udivisible16(c).max)])
1397 )
1398
1399 (Eq16 x (Mul16 (Const16 [c])
1400 (Trunc32to16
1401 (Rsh32Ux64
1402 mul:(Mul32
1403 (Const32 [m])
1404 (ZeroExt16to32 x))
1405 (Const64 [s])))
1406 )
1407 )
1408 && v.Block.Func.pass.name != "opt" && mul.Uses == 1
1409 && m == int32(1<<15+umagic16(c).m/2) && s == 16+umagic16(c).s-1
1410 && x.Op != OpConst16 && udivisibleOK16(c)
1411 => (Leq16U
1412 (RotateLeft16 <typ.UInt16>
1413 (Mul16 <typ.UInt16>
1414 (Const16 <typ.UInt16> [int16(udivisible16(c).m)])
1415 x)
1416 (Const16 <typ.UInt16> [int16(16-udivisible16(c).k)])
1417 )
1418 (Const16 <typ.UInt16> [int16(udivisible16(c).max)])
1419 )
1420
1421 (Eq16 x (Mul16 (Const16 [c])
1422 (Trunc32to16
1423 (Rsh32Ux64
1424 mul:(Mul32
1425 (Const32 [m])
1426 (Rsh32Ux64 (ZeroExt16to32 x) (Const64 [1])))
1427 (Const64 [s])))
1428 )
1429 )
1430 && v.Block.Func.pass.name != "opt" && mul.Uses == 1
1431 && m == int32(1<<15+(umagic16(c).m+1)/2) && s == 16+umagic16(c).s-2
1432 && x.Op != OpConst16 && udivisibleOK16(c)
1433 => (Leq16U
1434 (RotateLeft16 <typ.UInt16>
1435 (Mul16 <typ.UInt16>
1436 (Const16 <typ.UInt16> [int16(udivisible16(c).m)])
1437 x)
1438 (Const16 <typ.UInt16> [int16(16-udivisible16(c).k)])
1439 )
1440 (Const16 <typ.UInt16> [int16(udivisible16(c).max)])
1441 )
1442
1443 (Eq16 x (Mul16 (Const16 [c])
1444 (Trunc32to16
1445 (Rsh32Ux64
1446 (Avg32u
1447 (Lsh32x64 (ZeroExt16to32 x) (Const64 [16]))
1448 mul:(Mul32
1449 (Const32 [m])
1450 (ZeroExt16to32 x)))
1451 (Const64 [s])))
1452 )
1453 )
1454 && v.Block.Func.pass.name != "opt" && mul.Uses == 1
1455 && m == int32(umagic16(c).m) && s == 16+umagic16(c).s-1
1456 && x.Op != OpConst16 && udivisibleOK16(c)
1457 => (Leq16U
1458 (RotateLeft16 <typ.UInt16>
1459 (Mul16 <typ.UInt16>
1460 (Const16 <typ.UInt16> [int16(udivisible16(c).m)])
1461 x)
1462 (Const16 <typ.UInt16> [int16(16-udivisible16(c).k)])
1463 )
1464 (Const16 <typ.UInt16> [int16(udivisible16(c).max)])
1465 )
1466
1467 (Eq32 x (Mul32 (Const32 [c])
1468 (Rsh32Ux64
1469 mul:(Hmul32u
1470 (Const32 [m])
1471 x)
1472 (Const64 [s]))
1473 )
1474 )
1475 && v.Block.Func.pass.name != "opt" && mul.Uses == 1
1476 && m == int32(1<<31+umagic32(c).m/2) && s == umagic32(c).s-1
1477 && x.Op != OpConst32 && udivisibleOK32(c)
1478 => (Leq32U
1479 (RotateLeft32 <typ.UInt32>
1480 (Mul32 <typ.UInt32>
1481 (Const32 <typ.UInt32> [int32(udivisible32(c).m)])
1482 x)
1483 (Const32 <typ.UInt32> [int32(32-udivisible32(c).k)])
1484 )
1485 (Const32 <typ.UInt32> [int32(udivisible32(c).max)])
1486 )
1487
1488 (Eq32 x (Mul32 (Const32 [c])
1489 (Rsh32Ux64
1490 mul:(Hmul32u
1491 (Const32 <typ.UInt32> [m])
1492 (Rsh32Ux64 x (Const64 [1])))
1493 (Const64 [s]))
1494 )
1495 )
1496 && v.Block.Func.pass.name != "opt" && mul.Uses == 1
1497 && m == int32(1<<31+(umagic32(c).m+1)/2) && s == umagic32(c).s-2
1498 && x.Op != OpConst32 && udivisibleOK32(c)
1499 => (Leq32U
1500 (RotateLeft32 <typ.UInt32>
1501 (Mul32 <typ.UInt32>
1502 (Const32 <typ.UInt32> [int32(udivisible32(c).m)])
1503 x)
1504 (Const32 <typ.UInt32> [int32(32-udivisible32(c).k)])
1505 )
1506 (Const32 <typ.UInt32> [int32(udivisible32(c).max)])
1507 )
1508
1509 (Eq32 x (Mul32 (Const32 [c])
1510 (Rsh32Ux64
1511 (Avg32u
1512 x
1513 mul:(Hmul32u
1514 (Const32 [m])
1515 x))
1516 (Const64 [s]))
1517 )
1518 )
1519 && v.Block.Func.pass.name != "opt" && mul.Uses == 1
1520 && m == int32(umagic32(c).m) && s == umagic32(c).s-1
1521 && x.Op != OpConst32 && udivisibleOK32(c)
1522 => (Leq32U
1523 (RotateLeft32 <typ.UInt32>
1524 (Mul32 <typ.UInt32>
1525 (Const32 <typ.UInt32> [int32(udivisible32(c).m)])
1526 x)
1527 (Const32 <typ.UInt32> [int32(32-udivisible32(c).k)])
1528 )
1529 (Const32 <typ.UInt32> [int32(udivisible32(c).max)])
1530 )
1531
1532 (Eq32 x (Mul32 (Const32 [c])
1533 (Trunc64to32
1534 (Rsh64Ux64
1535 mul:(Mul64
1536 (Const64 [m])
1537 (ZeroExt32to64 x))
1538 (Const64 [s])))
1539 )
1540 )
1541 && v.Block.Func.pass.name != "opt" && mul.Uses == 1
1542 && m == int64(1<<31+umagic32(c).m/2) && s == 32+umagic32(c).s-1
1543 && x.Op != OpConst32 && udivisibleOK32(c)
1544 => (Leq32U
1545 (RotateLeft32 <typ.UInt32>
1546 (Mul32 <typ.UInt32>
1547 (Const32 <typ.UInt32> [int32(udivisible32(c).m)])
1548 x)
1549 (Const32 <typ.UInt32> [int32(32-udivisible32(c).k)])
1550 )
1551 (Const32 <typ.UInt32> [int32(udivisible32(c).max)])
1552 )
1553
1554 (Eq32 x (Mul32 (Const32 [c])
1555 (Trunc64to32
1556 (Rsh64Ux64
1557 mul:(Mul64
1558 (Const64 [m])
1559 (Rsh64Ux64 (ZeroExt32to64 x) (Const64 [1])))
1560 (Const64 [s])))
1561 )
1562 )
1563 && v.Block.Func.pass.name != "opt" && mul.Uses == 1
1564 && m == int64(1<<31+(umagic32(c).m+1)/2) && s == 32+umagic32(c).s-2
1565 && x.Op != OpConst32 && udivisibleOK32(c)
1566 => (Leq32U
1567 (RotateLeft32 <typ.UInt32>
1568 (Mul32 <typ.UInt32>
1569 (Const32 <typ.UInt32> [int32(udivisible32(c).m)])
1570 x)
1571 (Const32 <typ.UInt32> [int32(32-udivisible32(c).k)])
1572 )
1573 (Const32 <typ.UInt32> [int32(udivisible32(c).max)])
1574 )
1575
1576 (Eq32 x (Mul32 (Const32 [c])
1577 (Trunc64to32
1578 (Rsh64Ux64
1579 (Avg64u
1580 (Lsh64x64 (ZeroExt32to64 x) (Const64 [32]))
1581 mul:(Mul64
1582 (Const64 [m])
1583 (ZeroExt32to64 x)))
1584 (Const64 [s])))
1585 )
1586 )
1587 && v.Block.Func.pass.name != "opt" && mul.Uses == 1
1588 && m == int64(umagic32(c).m) && s == 32+umagic32(c).s-1
1589 && x.Op != OpConst32 && udivisibleOK32(c)
1590 => (Leq32U
1591 (RotateLeft32 <typ.UInt32>
1592 (Mul32 <typ.UInt32>
1593 (Const32 <typ.UInt32> [int32(udivisible32(c).m)])
1594 x)
1595 (Const32 <typ.UInt32> [int32(32-udivisible32(c).k)])
1596 )
1597 (Const32 <typ.UInt32> [int32(udivisible32(c).max)])
1598 )
1599
1600 (Eq64 x (Mul64 (Const64 [c])
1601 (Rsh64Ux64
1602 mul:(Hmul64u
1603 (Const64 [m])
1604 x)
1605 (Const64 [s]))
1606 )
1607 ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1
1608 && m == int64(1<<63+umagic64(c).m/2) && s == umagic64(c).s-1
1609 && x.Op != OpConst64 && udivisibleOK64(c)
1610 => (Leq64U
1611 (RotateLeft64 <typ.UInt64>
1612 (Mul64 <typ.UInt64>
1613 (Const64 <typ.UInt64> [int64(udivisible64(c).m)])
1614 x)
1615 (Const64 <typ.UInt64> [64-udivisible64(c).k])
1616 )
1617 (Const64 <typ.UInt64> [int64(udivisible64(c).max)])
1618 )
1619 (Eq64 x (Mul64 (Const64 [c])
1620 (Rsh64Ux64
1621 mul:(Hmul64u
1622 (Const64 [m])
1623 (Rsh64Ux64 x (Const64 [1])))
1624 (Const64 [s]))
1625 )
1626 ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1
1627 && m == int64(1<<63+(umagic64(c).m+1)/2) && s == umagic64(c).s-2
1628 && x.Op != OpConst64 && udivisibleOK64(c)
1629 => (Leq64U
1630 (RotateLeft64 <typ.UInt64>
1631 (Mul64 <typ.UInt64>
1632 (Const64 <typ.UInt64> [int64(udivisible64(c).m)])
1633 x)
1634 (Const64 <typ.UInt64> [64-udivisible64(c).k])
1635 )
1636 (Const64 <typ.UInt64> [int64(udivisible64(c).max)])
1637 )
1638 (Eq64 x (Mul64 (Const64 [c])
1639 (Rsh64Ux64
1640 (Avg64u
1641 x
1642 mul:(Hmul64u
1643 (Const64 [m])
1644 x))
1645 (Const64 [s]))
1646 )
1647 ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1
1648 && m == int64(umagic64(c).m) && s == umagic64(c).s-1
1649 && x.Op != OpConst64 && udivisibleOK64(c)
1650 => (Leq64U
1651 (RotateLeft64 <typ.UInt64>
1652 (Mul64 <typ.UInt64>
1653 (Const64 <typ.UInt64> [int64(udivisible64(c).m)])
1654 x)
1655 (Const64 <typ.UInt64> [64-udivisible64(c).k])
1656 )
1657 (Const64 <typ.UInt64> [int64(udivisible64(c).max)])
1658 )
1659
1660 // Signed divisibility checks convert to multiply, add and rotate.
1661 (Eq8 x (Mul8 (Const8 [c])
1662 (Sub8
1663 (Rsh32x64
1664 mul:(Mul32
1665 (Const32 [m])
1666 (SignExt8to32 x))
1667 (Const64 [s]))
1668 (Rsh32x64
1669 (SignExt8to32 x)
1670 (Const64 [31])))
1671 )
1672 )
1673 && v.Block.Func.pass.name != "opt" && mul.Uses == 1
1674 && m == int32(smagic8(c).m) && s == 8+smagic8(c).s
1675 && x.Op != OpConst8 && sdivisibleOK8(c)
1676 => (Leq8U
1677 (RotateLeft8 <typ.UInt8>
1678 (Add8 <typ.UInt8>
1679 (Mul8 <typ.UInt8>
1680 (Const8 <typ.UInt8> [int8(sdivisible8(c).m)])
1681 x)
1682 (Const8 <typ.UInt8> [int8(sdivisible8(c).a)])
1683 )
1684 (Const8 <typ.UInt8> [int8(8-sdivisible8(c).k)])
1685 )
1686 (Const8 <typ.UInt8> [int8(sdivisible8(c).max)])
1687 )
1688
1689 (Eq16 x (Mul16 (Const16 [c])
1690 (Sub16
1691 (Rsh32x64
1692 mul:(Mul32
1693 (Const32 [m])
1694 (SignExt16to32 x))
1695 (Const64 [s]))
1696 (Rsh32x64
1697 (SignExt16to32 x)
1698 (Const64 [31])))
1699 )
1700 )
1701 && v.Block.Func.pass.name != "opt" && mul.Uses == 1
1702 && m == int32(smagic16(c).m) && s == 16+smagic16(c).s
1703 && x.Op != OpConst16 && sdivisibleOK16(c)
1704 => (Leq16U
1705 (RotateLeft16 <typ.UInt16>
1706 (Add16 <typ.UInt16>
1707 (Mul16 <typ.UInt16>
1708 (Const16 <typ.UInt16> [int16(sdivisible16(c).m)])
1709 x)
1710 (Const16 <typ.UInt16> [int16(sdivisible16(c).a)])
1711 )
1712 (Const16 <typ.UInt16> [int16(16-sdivisible16(c).k)])
1713 )
1714 (Const16 <typ.UInt16> [int16(sdivisible16(c).max)])
1715 )
1716
1717 (Eq32 x (Mul32 (Const32 [c])
1718 (Sub32
1719 (Rsh64x64
1720 mul:(Mul64
1721 (Const64 [m])
1722 (SignExt32to64 x))
1723 (Const64 [s]))
1724 (Rsh64x64
1725 (SignExt32to64 x)
1726 (Const64 [63])))
1727 )
1728 )
1729 && v.Block.Func.pass.name != "opt" && mul.Uses == 1
1730 && m == int64(smagic32(c).m) && s == 32+smagic32(c).s
1731 && x.Op != OpConst32 && sdivisibleOK32(c)
1732 => (Leq32U
1733 (RotateLeft32 <typ.UInt32>
1734 (Add32 <typ.UInt32>
1735 (Mul32 <typ.UInt32>
1736 (Const32 <typ.UInt32> [int32(sdivisible32(c).m)])
1737 x)
1738 (Const32 <typ.UInt32> [int32(sdivisible32(c).a)])
1739 )
1740 (Const32 <typ.UInt32> [int32(32-sdivisible32(c).k)])
1741 )
1742 (Const32 <typ.UInt32> [int32(sdivisible32(c).max)])
1743 )
1744
1745 (Eq32 x (Mul32 (Const32 [c])
1746 (Sub32
1747 (Rsh32x64
1748 mul:(Hmul32
1749 (Const32 [m])
1750 x)
1751 (Const64 [s]))
1752 (Rsh32x64
1753 x
1754 (Const64 [31])))
1755 )
1756 )
1757 && v.Block.Func.pass.name != "opt" && mul.Uses == 1
1758 && m == int32(smagic32(c).m/2) && s == smagic32(c).s-1
1759 && x.Op != OpConst32 && sdivisibleOK32(c)
1760 => (Leq32U
1761 (RotateLeft32 <typ.UInt32>
1762 (Add32 <typ.UInt32>
1763 (Mul32 <typ.UInt32>
1764 (Const32 <typ.UInt32> [int32(sdivisible32(c).m)])
1765 x)
1766 (Const32 <typ.UInt32> [int32(sdivisible32(c).a)])
1767 )
1768 (Const32 <typ.UInt32> [int32(32-sdivisible32(c).k)])
1769 )
1770 (Const32 <typ.UInt32> [int32(sdivisible32(c).max)])
1771 )
1772
1773 (Eq32 x (Mul32 (Const32 [c])
1774 (Sub32
1775 (Rsh32x64
1776 (Add32
1777 mul:(Hmul32
1778 (Const32 [m])
1779 x)
1780 x)
1781 (Const64 [s]))
1782 (Rsh32x64
1783 x
1784 (Const64 [31])))
1785 )
1786 )
1787 && v.Block.Func.pass.name != "opt" && mul.Uses == 1
1788 && m == int32(smagic32(c).m) && s == smagic32(c).s
1789 && x.Op != OpConst32 && sdivisibleOK32(c)
1790 => (Leq32U
1791 (RotateLeft32 <typ.UInt32>
1792 (Add32 <typ.UInt32>
1793 (Mul32 <typ.UInt32>
1794 (Const32 <typ.UInt32> [int32(sdivisible32(c).m)])
1795 x)
1796 (Const32 <typ.UInt32> [int32(sdivisible32(c).a)])
1797 )
1798 (Const32 <typ.UInt32> [int32(32-sdivisible32(c).k)])
1799 )
1800 (Const32 <typ.UInt32> [int32(sdivisible32(c).max)])
1801 )
1802
1803 (Eq64 x (Mul64 (Const64 [c])
1804 (Sub64
1805 (Rsh64x64
1806 mul:(Hmul64
1807 (Const64 [m])
1808 x)
1809 (Const64 [s]))
1810 (Rsh64x64
1811 x
1812 (Const64 [63])))
1813 )
1814 )
1815 && v.Block.Func.pass.name != "opt" && mul.Uses == 1
1816 && m == int64(smagic64(c).m/2) && s == smagic64(c).s-1
1817 && x.Op != OpConst64 && sdivisibleOK64(c)
1818 => (Leq64U
1819 (RotateLeft64 <typ.UInt64>
1820 (Add64 <typ.UInt64>
1821 (Mul64 <typ.UInt64>
1822 (Const64 <typ.UInt64> [int64(sdivisible64(c).m)])
1823 x)
1824 (Const64 <typ.UInt64> [int64(sdivisible64(c).a)])
1825 )
1826 (Const64 <typ.UInt64> [64-sdivisible64(c).k])
1827 )
1828 (Const64 <typ.UInt64> [int64(sdivisible64(c).max)])
1829 )
1830
1831 (Eq64 x (Mul64 (Const64 [c])
1832 (Sub64
1833 (Rsh64x64
1834 (Add64
1835 mul:(Hmul64
1836 (Const64 [m])
1837 x)
1838 x)
1839 (Const64 [s]))
1840 (Rsh64x64
1841 x
1842 (Const64 [63])))
1843 )
1844 )
1845 && v.Block.Func.pass.name != "opt" && mul.Uses == 1
1846 && m == int64(smagic64(c).m) && s == smagic64(c).s
1847 && x.Op != OpConst64 && sdivisibleOK64(c)
1848 => (Leq64U
1849 (RotateLeft64 <typ.UInt64>
1850 (Add64 <typ.UInt64>
1851 (Mul64 <typ.UInt64>
1852 (Const64 <typ.UInt64> [int64(sdivisible64(c).m)])
1853 x)
1854 (Const64 <typ.UInt64> [int64(sdivisible64(c).a)])
1855 )
1856 (Const64 <typ.UInt64> [64-sdivisible64(c).k])
1857 )
1858 (Const64 <typ.UInt64> [int64(sdivisible64(c).max)])
1859 )
1860
1861 // Divisibility check for signed integers for power of two constant are simple mask.
1862 // However, we must match against the rewritten n%c == 0 -> n - c*(n/c) == 0 -> n == c*(n/c)
1863 // where n/c contains fixup code to handle signed n.
1864 ((Eq8|Neq8) n (Lsh8x64
1865 (Rsh8x64
1866 (Add8 <t> n (Rsh8Ux64 <t> (Rsh8x64 <t> n (Const64 <typ.UInt64> [ 7])) (Const64 <typ.UInt64> [kbar])))
1867 (Const64 <typ.UInt64> [k]))
1868 (Const64 <typ.UInt64> [k]))
1869 ) && k > 0 && k < 7 && kbar == 8 - k
1870 => ((Eq8|Neq8) (And8 <t> n (Const8 <t> [1<<uint(k)-1])) (Const8 <t> [0]))
1871
1872 ((Eq16|Neq16) n (Lsh16x64
1873 (Rsh16x64
1874 (Add16 <t> n (Rsh16Ux64 <t> (Rsh16x64 <t> n (Const64 <typ.UInt64> [15])) (Const64 <typ.UInt64> [kbar])))
1875 (Const64 <typ.UInt64> [k]))
1876 (Const64 <typ.UInt64> [k]))
1877 ) && k > 0 && k < 15 && kbar == 16 - k
1878 => ((Eq16|Neq16) (And16 <t> n (Const16 <t> [1<<uint(k)-1])) (Const16 <t> [0]))
1879
1880 ((Eq32|Neq32) n (Lsh32x64
1881 (Rsh32x64
1882 (Add32 <t> n (Rsh32Ux64 <t> (Rsh32x64 <t> n (Const64 <typ.UInt64> [31])) (Const64 <typ.UInt64> [kbar])))
1883 (Const64 <typ.UInt64> [k]))
1884 (Const64 <typ.UInt64> [k]))
1885 ) && k > 0 && k < 31 && kbar == 32 - k
1886 => ((Eq32|Neq32) (And32 <t> n (Const32 <t> [1<<uint(k)-1])) (Const32 <t> [0]))
1887
1888 ((Eq64|Neq64) n (Lsh64x64
1889 (Rsh64x64
1890 (Add64 <t> n (Rsh64Ux64 <t> (Rsh64x64 <t> n (Const64 <typ.UInt64> [63])) (Const64 <typ.UInt64> [kbar])))
1891 (Const64 <typ.UInt64> [k]))
1892 (Const64 <typ.UInt64> [k]))
1893 ) && k > 0 && k < 63 && kbar == 64 - k
1894 => ((Eq64|Neq64) (And64 <t> n (Const64 <t> [1<<uint(k)-1])) (Const64 <t> [0]))
1895
1896 (Eq(8|16|32|64) s:(Sub(8|16|32|64) x y) (Const(8|16|32|64) [0])) && s.Uses == 1 => (Eq(8|16|32|64) x y)
1897 (Neq(8|16|32|64) s:(Sub(8|16|32|64) x y) (Const(8|16|32|64) [0])) && s.Uses == 1 => (Neq(8|16|32|64) x y)
1898
1899 // Optimize bitsets
1900 (Eq8 (And8 <t> x (Const8 <t> [y])) (Const8 <t> [y])) && oneBit8(y)
1901 => (Neq8 (And8 <t> x (Const8 <t> [y])) (Const8 <t> [0]))
1902 (Eq16 (And16 <t> x (Const16 <t> [y])) (Const16 <t> [y])) && oneBit16(y)
1903 => (Neq16 (And16 <t> x (Const16 <t> [y])) (Const16 <t> [0]))
1904 (Eq32 (And32 <t> x (Const32 <t> [y])) (Const32 <t> [y])) && oneBit32(y)
1905 => (Neq32 (And32 <t> x (Const32 <t> [y])) (Const32 <t> [0]))
1906 (Eq64 (And64 <t> x (Const64 <t> [y])) (Const64 <t> [y])) && oneBit64(y)
1907 => (Neq64 (And64 <t> x (Const64 <t> [y])) (Const64 <t> [0]))
1908 (Neq8 (And8 <t> x (Const8 <t> [y])) (Const8 <t> [y])) && oneBit8(y)
1909 => (Eq8 (And8 <t> x (Const8 <t> [y])) (Const8 <t> [0]))
1910 (Neq16 (And16 <t> x (Const16 <t> [y])) (Const16 <t> [y])) && oneBit16(y)
1911 => (Eq16 (And16 <t> x (Const16 <t> [y])) (Const16 <t> [0]))
1912 (Neq32 (And32 <t> x (Const32 <t> [y])) (Const32 <t> [y])) && oneBit32(y)
1913 => (Eq32 (And32 <t> x (Const32 <t> [y])) (Const32 <t> [0]))
1914 (Neq64 (And64 <t> x (Const64 <t> [y])) (Const64 <t> [y])) && oneBit64(y)
1915 => (Eq64 (And64 <t> x (Const64 <t> [y])) (Const64 <t> [0]))
1916
1917 // Reassociate expressions involving
1918 // constants such that constants come first,
1919 // exposing obvious constant-folding opportunities.
1920 // Reassociate (op (op y C) x) to (op C (op x y)) or similar, where C
1921 // is constant, which pushes constants to the outside
1922 // of the expression. At that point, any constant-folding
1923 // opportunities should be obvious.
1924 // Note: don't include AddPtr here! In order to maintain the
1925 // invariant that pointers must stay within the pointed-to object,
1926 // we can't pull part of a pointer computation above the AddPtr.
1927 // See issue 37881.
1928 // Note: we don't need to handle any (x-C) cases because we already rewrite
1929 // (x-C) to (x+(-C)).
1930
1931 // x + (C + z) -> C + (x + z)
1932 (Add64 (Add64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Add64 i (Add64 <t> z x))
1933 (Add32 (Add32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Add32 i (Add32 <t> z x))
1934 (Add16 (Add16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Add16 i (Add16 <t> z x))
1935 (Add8 (Add8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Add8 i (Add8 <t> z x))
1936
1937 // x + (C - z) -> C + (x - z)
1938 (Add64 (Sub64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Add64 i (Sub64 <t> x z))
1939 (Add32 (Sub32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Add32 i (Sub32 <t> x z))
1940 (Add16 (Sub16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Add16 i (Sub16 <t> x z))
1941 (Add8 (Sub8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Add8 i (Sub8 <t> x z))
1942
1943 // x - (C - z) -> x + (z - C) -> (x + z) - C
1944 (Sub64 x (Sub64 i:(Const64 <t>) z)) && (z.Op != OpConst64 && x.Op != OpConst64) => (Sub64 (Add64 <t> x z) i)
1945 (Sub32 x (Sub32 i:(Const32 <t>) z)) && (z.Op != OpConst32 && x.Op != OpConst32) => (Sub32 (Add32 <t> x z) i)
1946 (Sub16 x (Sub16 i:(Const16 <t>) z)) && (z.Op != OpConst16 && x.Op != OpConst16) => (Sub16 (Add16 <t> x z) i)
1947 (Sub8 x (Sub8 i:(Const8 <t>) z)) && (z.Op != OpConst8 && x.Op != OpConst8) => (Sub8 (Add8 <t> x z) i)
1948
1949 // x - (z + C) -> x + (-z - C) -> (x - z) - C
1950 (Sub64 x (Add64 z i:(Const64 <t>))) && (z.Op != OpConst64 && x.Op != OpConst64) => (Sub64 (Sub64 <t> x z) i)
1951 (Sub32 x (Add32 z i:(Const32 <t>))) && (z.Op != OpConst32 && x.Op != OpConst32) => (Sub32 (Sub32 <t> x z) i)
1952 (Sub16 x (Add16 z i:(Const16 <t>))) && (z.Op != OpConst16 && x.Op != OpConst16) => (Sub16 (Sub16 <t> x z) i)
1953 (Sub8 x (Add8 z i:(Const8 <t>))) && (z.Op != OpConst8 && x.Op != OpConst8) => (Sub8 (Sub8 <t> x z) i)
1954
1955 // (C - z) - x -> C - (z + x)
1956 (Sub64 (Sub64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Sub64 i (Add64 <t> z x))
1957 (Sub32 (Sub32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Sub32 i (Add32 <t> z x))
1958 (Sub16 (Sub16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Sub16 i (Add16 <t> z x))
1959 (Sub8 (Sub8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Sub8 i (Add8 <t> z x))
1960
1961 // (z + C) -x -> C + (z - x)
1962 (Sub64 (Add64 z i:(Const64 <t>)) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Add64 i (Sub64 <t> z x))
1963 (Sub32 (Add32 z i:(Const32 <t>)) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Add32 i (Sub32 <t> z x))
1964 (Sub16 (Add16 z i:(Const16 <t>)) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Add16 i (Sub16 <t> z x))
1965 (Sub8 (Add8 z i:(Const8 <t>)) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Add8 i (Sub8 <t> z x))
1966
1967 // x & (C & z) -> C & (x & z)
1968 (And64 (And64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (And64 i (And64 <t> z x))
1969 (And32 (And32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (And32 i (And32 <t> z x))
1970 (And16 (And16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (And16 i (And16 <t> z x))
1971 (And8 (And8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (And8 i (And8 <t> z x))
1972
1973 // x | (C | z) -> C | (x | z)
1974 (Or64 (Or64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Or64 i (Or64 <t> z x))
1975 (Or32 (Or32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Or32 i (Or32 <t> z x))
1976 (Or16 (Or16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Or16 i (Or16 <t> z x))
1977 (Or8 (Or8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Or8 i (Or8 <t> z x))
1978
1979 // x ^ (C ^ z) -> C ^ (x ^ z)
1980 (Xor64 (Xor64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Xor64 i (Xor64 <t> z x))
1981 (Xor32 (Xor32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Xor32 i (Xor32 <t> z x))
1982 (Xor16 (Xor16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Xor16 i (Xor16 <t> z x))
1983 (Xor8 (Xor8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Xor8 i (Xor8 <t> z x))
1984
1985 // x * (D * z) = D * (x * z)
1986 (Mul64 (Mul64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Mul64 i (Mul64 <t> x z))
1987 (Mul32 (Mul32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Mul32 i (Mul32 <t> x z))
1988 (Mul16 (Mul16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Mul16 i (Mul16 <t> x z))
1989 (Mul8 (Mul8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Mul8 i (Mul8 <t> x z))
1990
1991 // C + (D + x) -> (C + D) + x
1992 (Add64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Add64 (Const64 <t> [c+d]) x)
1993 (Add32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Add32 (Const32 <t> [c+d]) x)
1994 (Add16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Add16 (Const16 <t> [c+d]) x)
1995 (Add8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) => (Add8 (Const8 <t> [c+d]) x)
1996
1997 // C + (D - x) -> (C + D) - x
1998 (Add64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) => (Sub64 (Const64 <t> [c+d]) x)
1999 (Add32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) => (Sub32 (Const32 <t> [c+d]) x)
2000 (Add16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) => (Sub16 (Const16 <t> [c+d]) x)
2001 (Add8 (Const8 <t> [c]) (Sub8 (Const8 <t> [d]) x)) => (Sub8 (Const8 <t> [c+d]) x)
2002
2003 // C - (D - x) -> (C - D) + x
2004 (Sub64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) => (Add64 (Const64 <t> [c-d]) x)
2005 (Sub32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) => (Add32 (Const32 <t> [c-d]) x)
2006 (Sub16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) => (Add16 (Const16 <t> [c-d]) x)
2007 (Sub8 (Const8 <t> [c]) (Sub8 (Const8 <t> [d]) x)) => (Add8 (Const8 <t> [c-d]) x)
2008
2009 // C - (D + x) -> (C - D) - x
2010 (Sub64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Sub64 (Const64 <t> [c-d]) x)
2011 (Sub32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Sub32 (Const32 <t> [c-d]) x)
2012 (Sub16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Sub16 (Const16 <t> [c-d]) x)
2013 (Sub8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) => (Sub8 (Const8 <t> [c-d]) x)
2014
2015 // C & (D & x) -> (C & D) & x
2016 (And64 (Const64 <t> [c]) (And64 (Const64 <t> [d]) x)) => (And64 (Const64 <t> [c&d]) x)
2017 (And32 (Const32 <t> [c]) (And32 (Const32 <t> [d]) x)) => (And32 (Const32 <t> [c&d]) x)
2018 (And16 (Const16 <t> [c]) (And16 (Const16 <t> [d]) x)) => (And16 (Const16 <t> [c&d]) x)
2019 (And8 (Const8 <t> [c]) (And8 (Const8 <t> [d]) x)) => (And8 (Const8 <t> [c&d]) x)
2020
2021 // C | (D | x) -> (C | D) | x
2022 (Or64 (Const64 <t> [c]) (Or64 (Const64 <t> [d]) x)) => (Or64 (Const64 <t> [c|d]) x)
2023 (Or32 (Const32 <t> [c]) (Or32 (Const32 <t> [d]) x)) => (Or32 (Const32 <t> [c|d]) x)
2024 (Or16 (Const16 <t> [c]) (Or16 (Const16 <t> [d]) x)) => (Or16 (Const16 <t> [c|d]) x)
2025 (Or8 (Const8 <t> [c]) (Or8 (Const8 <t> [d]) x)) => (Or8 (Const8 <t> [c|d]) x)
2026
2027 // C ^ (D ^ x) -> (C ^ D) ^ x
2028 (Xor64 (Const64 <t> [c]) (Xor64 (Const64 <t> [d]) x)) => (Xor64 (Const64 <t> [c^d]) x)
2029 (Xor32 (Const32 <t> [c]) (Xor32 (Const32 <t> [d]) x)) => (Xor32 (Const32 <t> [c^d]) x)
2030 (Xor16 (Const16 <t> [c]) (Xor16 (Const16 <t> [d]) x)) => (Xor16 (Const16 <t> [c^d]) x)
2031 (Xor8 (Const8 <t> [c]) (Xor8 (Const8 <t> [d]) x)) => (Xor8 (Const8 <t> [c^d]) x)
2032
2033 // C * (D * x) = (C * D) * x
2034 (Mul64 (Const64 <t> [c]) (Mul64 (Const64 <t> [d]) x)) => (Mul64 (Const64 <t> [c*d]) x)
2035 (Mul32 (Const32 <t> [c]) (Mul32 (Const32 <t> [d]) x)) => (Mul32 (Const32 <t> [c*d]) x)
2036 (Mul16 (Const16 <t> [c]) (Mul16 (Const16 <t> [d]) x)) => (Mul16 (Const16 <t> [c*d]) x)
2037 (Mul8 (Const8 <t> [c]) (Mul8 (Const8 <t> [d]) x)) => (Mul8 (Const8 <t> [c*d]) x)
2038
2039 // floating point optimizations
2040 (Mul(32|64)F x (Const(32|64)F [1])) => x
2041 (Mul32F x (Const32F [-1])) => (Neg32F x)
2042 (Mul64F x (Const64F [-1])) => (Neg64F x)
2043 (Mul32F x (Const32F [2])) => (Add32F x x)
2044 (Mul64F x (Const64F [2])) => (Add64F x x)
2045
2046 (Div32F x (Const32F <t> [c])) && reciprocalExact32(c) => (Mul32F x (Const32F <t> [1/c]))
2047 (Div64F x (Const64F <t> [c])) && reciprocalExact64(c) => (Mul64F x (Const64F <t> [1/c]))
2048
2049 // rewrite single-precision sqrt expression "float32(math.Sqrt(float64(x)))"
2050 (Cvt64Fto32F sqrt0:(Sqrt (Cvt32Fto64F x))) && sqrt0.Uses==1 => (Sqrt32 x)
2051
2052 (Sqrt (Const64F [c])) && !math.IsNaN(math.Sqrt(c)) => (Const64F [math.Sqrt(c)])
2053
2054 // for rewriting constant folded math/bits ops
2055 (Select0 (MakeTuple x y)) => x
2056 (Select1 (MakeTuple x y)) => y
2057
2058 // for rewriting results of some late-expanded rewrites (below)
2059 (SelectN [0] (MakeResult x ___)) => x
2060 (SelectN [1] (MakeResult x y ___)) => y
2061 (SelectN [2] (MakeResult x y z ___)) => z
2062
2063 // for late-expanded calls, recognize newobject and remove zeroing and nilchecks
2064 (Zero (SelectN [0] call:(StaticLECall _ _)) mem:(SelectN [1] call))
2065 && isSameCall(call.Aux, "runtime.newobject")
2066 => mem
2067
2068 (Store (SelectN [0] call:(StaticLECall _ _)) x mem:(SelectN [1] call))
2069 && isConstZero(x)
2070 && isSameCall(call.Aux, "runtime.newobject")
2071 => mem
2072
2073 (Store (OffPtr (SelectN [0] call:(StaticLECall _ _))) x mem:(SelectN [1] call))
2074 && isConstZero(x)
2075 && isSameCall(call.Aux, "runtime.newobject")
2076 => mem
2077
2078 (NilCheck ptr:(SelectN [0] call:(StaticLECall _ _)) _)
2079 && isSameCall(call.Aux, "runtime.newobject")
2080 && warnRule(fe.Debug_checknil(), v, "removed nil check")
2081 => ptr
2082
2083 (NilCheck ptr:(OffPtr (SelectN [0] call:(StaticLECall _ _))) _)
2084 && isSameCall(call.Aux, "runtime.newobject")
2085 && warnRule(fe.Debug_checknil(), v, "removed nil check")
2086 => ptr
2087
2088 // Addresses of globals are always non-nil.
2089 (NilCheck ptr:(Addr {_} (SB)) _) => ptr
2090 (NilCheck ptr:(Convert (Addr {_} (SB)) _) _) => ptr
2091
2092 // Addresses of locals are always non-nil.
2093 (NilCheck ptr:(LocalAddr _ _) _)
2094 && warnRule(fe.Debug_checknil(), v, "removed nil check")
2095 => ptr
2096
2097 // Nil checks of nil checks are redundant.
2098 // See comment at the end of https://go-review.googlesource.com/c/go/+/537775.
2099 (NilCheck ptr:(NilCheck _ _) _ ) => ptr
2100
2101 // for late-expanded calls, recognize memequal applied to a single constant byte
2102 // Support is limited by 1, 2, 4, 8 byte sizes
2103 (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [1]) mem)
2104 && isSameCall(callAux, "runtime.memequal")
2105 && symIsRO(scon)
2106 => (MakeResult (Eq8 (Load <typ.Int8> sptr mem) (Const8 <typ.Int8> [int8(read8(scon,0))])) mem)
2107
2108 (StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [1]) mem)
2109 && isSameCall(callAux, "runtime.memequal")
2110 && symIsRO(scon)
2111 => (MakeResult (Eq8 (Load <typ.Int8> sptr mem) (Const8 <typ.Int8> [int8(read8(scon,0))])) mem)
2112
2113 (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [2]) mem)
2114 && isSameCall(callAux, "runtime.memequal")
2115 && symIsRO(scon)
2116 && canLoadUnaligned(config)
2117 => (MakeResult (Eq16 (Load <typ.Int16> sptr mem) (Const16 <typ.Int16> [int16(read16(scon,0,config.ctxt.Arch.ByteOrder))])) mem)
2118
2119 (StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [2]) mem)
2120 && isSameCall(callAux, "runtime.memequal")
2121 && symIsRO(scon)
2122 && canLoadUnaligned(config)
2123 => (MakeResult (Eq16 (Load <typ.Int16> sptr mem) (Const16 <typ.Int16> [int16(read16(scon,0,config.ctxt.Arch.ByteOrder))])) mem)
2124
2125 (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [4]) mem)
2126 && isSameCall(callAux, "runtime.memequal")
2127 && symIsRO(scon)
2128 && canLoadUnaligned(config)
2129 => (MakeResult (Eq32 (Load <typ.Int32> sptr mem) (Const32 <typ.Int32> [int32(read32(scon,0,config.ctxt.Arch.ByteOrder))])) mem)
2130
2131 (StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [4]) mem)
2132 && isSameCall(callAux, "runtime.memequal")
2133 && symIsRO(scon)
2134 && canLoadUnaligned(config)
2135 => (MakeResult (Eq32 (Load <typ.Int32> sptr mem) (Const32 <typ.Int32> [int32(read32(scon,0,config.ctxt.Arch.ByteOrder))])) mem)
2136
2137 (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [8]) mem)
2138 && isSameCall(callAux, "runtime.memequal")
2139 && symIsRO(scon)
2140 && canLoadUnaligned(config) && config.PtrSize == 8
2141 => (MakeResult (Eq64 (Load <typ.Int64> sptr mem) (Const64 <typ.Int64> [int64(read64(scon,0,config.ctxt.Arch.ByteOrder))])) mem)
2142
2143 (StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [8]) mem)
2144 && isSameCall(callAux, "runtime.memequal")
2145 && symIsRO(scon)
2146 && canLoadUnaligned(config) && config.PtrSize == 8
2147 => (MakeResult (Eq64 (Load <typ.Int64> sptr mem) (Const64 <typ.Int64> [int64(read64(scon,0,config.ctxt.Arch.ByteOrder))])) mem)
2148
2149 (StaticLECall {callAux} _ _ (Const64 [0]) mem)
2150 && isSameCall(callAux, "runtime.memequal")
2151 => (MakeResult (ConstBool <typ.Bool> [true]) mem)
2152
2153 (Static(Call|LECall) {callAux} p q _ mem)
2154 && isSameCall(callAux, "runtime.memequal")
2155 && isSamePtr(p, q)
2156 => (MakeResult (ConstBool <typ.Bool> [true]) mem)
2157
2158 // Turn known-size calls to memclrNoHeapPointers into a Zero.
2159 // Note that we are using types.Types[types.TUINT8] instead of sptr.Type.Elem() - see issue 55122 and CL 431496 for more details.
2160 (SelectN [0] call:(StaticCall {sym} sptr (Const(64|32) [c]) mem))
2161 && isInlinableMemclr(config, int64(c))
2162 && isSameCall(sym, "runtime.memclrNoHeapPointers")
2163 && call.Uses == 1
2164 && clobber(call)
2165 => (Zero {types.Types[types.TUINT8]} [int64(c)] sptr mem)
2166
2167 // Recognise make([]T, 0) and replace it with a pointer to the zerobase
2168 (StaticLECall {callAux} _ (Const(64|32) [0]) (Const(64|32) [0]) mem)
2169 && isSameCall(callAux, "runtime.makeslice")
2170 => (MakeResult (Addr <v.Type.FieldType(0)> {ir.Syms.Zerobase} (SB)) mem)
2171
2172 // Evaluate constant address comparisons.
2173 (EqPtr x x) => (ConstBool [true])
2174 (NeqPtr x x) => (ConstBool [false])
2175 (EqPtr (Addr {x} _) (Addr {y} _)) => (ConstBool [x == y])
2176 (EqPtr (Addr {x} _) (OffPtr [o] (Addr {y} _))) => (ConstBool [x == y && o == 0])
2177 (EqPtr (OffPtr [o1] (Addr {x} _)) (OffPtr [o2] (Addr {y} _))) => (ConstBool [x == y && o1 == o2])
2178 (NeqPtr (Addr {x} _) (Addr {y} _)) => (ConstBool [x != y])
2179 (NeqPtr (Addr {x} _) (OffPtr [o] (Addr {y} _))) => (ConstBool [x != y || o != 0])
2180 (NeqPtr (OffPtr [o1] (Addr {x} _)) (OffPtr [o2] (Addr {y} _))) => (ConstBool [x != y || o1 != o2])
2181 (EqPtr (LocalAddr {x} _ _) (LocalAddr {y} _ _)) => (ConstBool [x == y])
2182 (EqPtr (LocalAddr {x} _ _) (OffPtr [o] (LocalAddr {y} _ _))) => (ConstBool [x == y && o == 0])
2183 (EqPtr (OffPtr [o1] (LocalAddr {x} _ _)) (OffPtr [o2] (LocalAddr {y} _ _))) => (ConstBool [x == y && o1 == o2])
2184 (NeqPtr (LocalAddr {x} _ _) (LocalAddr {y} _ _)) => (ConstBool [x != y])
2185 (NeqPtr (LocalAddr {x} _ _) (OffPtr [o] (LocalAddr {y} _ _))) => (ConstBool [x != y || o != 0])
2186 (NeqPtr (OffPtr [o1] (LocalAddr {x} _ _)) (OffPtr [o2] (LocalAddr {y} _ _))) => (ConstBool [x != y || o1 != o2])
2187 (EqPtr (OffPtr [o1] p1) p2) && isSamePtr(p1, p2) => (ConstBool [o1 == 0])
2188 (NeqPtr (OffPtr [o1] p1) p2) && isSamePtr(p1, p2) => (ConstBool [o1 != 0])
2189 (EqPtr (OffPtr [o1] p1) (OffPtr [o2] p2)) && isSamePtr(p1, p2) => (ConstBool [o1 == o2])
2190 (NeqPtr (OffPtr [o1] p1) (OffPtr [o2] p2)) && isSamePtr(p1, p2) => (ConstBool [o1 != o2])
2191 (EqPtr (Const(32|64) [c]) (Const(32|64) [d])) => (ConstBool [c == d])
2192 (NeqPtr (Const(32|64) [c]) (Const(32|64) [d])) => (ConstBool [c != d])
2193 (EqPtr (Convert (Addr {x} _) _) (Addr {y} _)) => (ConstBool [x==y])
2194 (NeqPtr (Convert (Addr {x} _) _) (Addr {y} _)) => (ConstBool [x!=y])
2195
2196 (EqPtr (LocalAddr _ _) (Addr _)) => (ConstBool [false])
2197 (EqPtr (OffPtr (LocalAddr _ _)) (Addr _)) => (ConstBool [false])
2198 (EqPtr (LocalAddr _ _) (OffPtr (Addr _))) => (ConstBool [false])
2199 (EqPtr (OffPtr (LocalAddr _ _)) (OffPtr (Addr _))) => (ConstBool [false])
2200 (NeqPtr (LocalAddr _ _) (Addr _)) => (ConstBool [true])
2201 (NeqPtr (OffPtr (LocalAddr _ _)) (Addr _)) => (ConstBool [true])
2202 (NeqPtr (LocalAddr _ _) (OffPtr (Addr _))) => (ConstBool [true])
2203 (NeqPtr (OffPtr (LocalAddr _ _)) (OffPtr (Addr _))) => (ConstBool [true])
2204
2205 // Simplify address comparisons.
2206 (EqPtr (AddPtr p1 o1) p2) && isSamePtr(p1, p2) => (Not (IsNonNil o1))
2207 (NeqPtr (AddPtr p1 o1) p2) && isSamePtr(p1, p2) => (IsNonNil o1)
2208 (EqPtr (Const(32|64) [0]) p) => (Not (IsNonNil p))
2209 (NeqPtr (Const(32|64) [0]) p) => (IsNonNil p)
2210 (EqPtr (ConstNil) p) => (Not (IsNonNil p))
2211 (NeqPtr (ConstNil) p) => (IsNonNil p)
2212
2213 // Evaluate constant user nil checks.
2214 (IsNonNil (ConstNil)) => (ConstBool [false])
2215 (IsNonNil (Const(32|64) [c])) => (ConstBool [c != 0])
2216 (IsNonNil (Addr _) ) => (ConstBool [true])
2217 (IsNonNil (Convert (Addr _) _)) => (ConstBool [true])
2218 (IsNonNil (LocalAddr _ _)) => (ConstBool [true])
2219
2220 // Inline small or disjoint runtime.memmove calls with constant length.
2221 // See the comment in op Move in genericOps.go for discussion of the type.
2222 //
2223 // Note that we've lost any knowledge of the type and alignment requirements
2224 // of the source and destination. We only know the size, and that the type
2225 // contains no pointers.
2226 // The type of the move is not necessarily v.Args[0].Type().Elem()!
2227 // See issue 55122 for details.
2228 //
2229 // Because expand calls runs after prove, constants useful to this pattern may not appear.
2230 // Both versions need to exist; the memory and register variants.
2231 //
2232 // Match post-expansion calls, memory version.
2233 (SelectN [0] call:(StaticCall {sym} s1:(Store _ (Const(64|32) [sz]) s2:(Store _ src s3:(Store {t} _ dst mem)))))
2234 && sz >= 0
2235 && isSameCall(sym, "runtime.memmove")
2236 && s1.Uses == 1 && s2.Uses == 1 && s3.Uses == 1
2237 && isInlinableMemmove(dst, src, int64(sz), config)
2238 && clobber(s1, s2, s3, call)
2239 => (Move {types.Types[types.TUINT8]} [int64(sz)] dst src mem)
2240
2241 // Match post-expansion calls, register version.
2242 (SelectN [0] call:(StaticCall {sym} dst src (Const(64|32) [sz]) mem))
2243 && sz >= 0
2244 && call.Uses == 1 // this will exclude all calls with results
2245 && isSameCall(sym, "runtime.memmove")
2246 && isInlinableMemmove(dst, src, int64(sz), config)
2247 && clobber(call)
2248 => (Move {types.Types[types.TUINT8]} [int64(sz)] dst src mem)
2249
2250 // Match pre-expansion calls.
2251 (SelectN [0] call:(StaticLECall {sym} dst src (Const(64|32) [sz]) mem))
2252 && sz >= 0
2253 && call.Uses == 1 // this will exclude all calls with results
2254 && isSameCall(sym, "runtime.memmove")
2255 && isInlinableMemmove(dst, src, int64(sz), config)
2256 && clobber(call)
2257 => (Move {types.Types[types.TUINT8]} [int64(sz)] dst src mem)
2258
2259 // De-virtualize late-expanded interface calls into late-expanded static calls.
2260 (InterLECall [argsize] {auxCall} (Addr {fn} (SB)) ___) => devirtLECall(v, fn.(*obj.LSym))
2261
2262 // Move and Zero optimizations.
2263 // Move source and destination may overlap.
2264
2265 // Convert Moves into Zeros when the source is known to be zeros.
2266 (Move {t} [n] dst1 src mem:(Zero {t} [n] dst2 _)) && isSamePtr(src, dst2)
2267 => (Zero {t} [n] dst1 mem)
2268 (Move {t} [n] dst1 src mem:(VarDef (Zero {t} [n] dst0 _))) && isSamePtr(src, dst0)
2269 => (Zero {t} [n] dst1 mem)
2270 (Move {t} [n] dst (Addr {sym} (SB)) mem) && symIsROZero(sym) => (Zero {t} [n] dst mem)
2271
2272 // Don't Store to variables that are about to be overwritten by Move/Zero.
2273 (Zero {t1} [n] p1 store:(Store {t2} (OffPtr [o2] p2) _ mem))
2274 && isSamePtr(p1, p2) && store.Uses == 1
2275 && n >= o2 + t2.Size()
2276 && clobber(store)
2277 => (Zero {t1} [n] p1 mem)
2278 (Move {t1} [n] dst1 src1 store:(Store {t2} op:(OffPtr [o2] dst2) _ mem))
2279 && isSamePtr(dst1, dst2) && store.Uses == 1
2280 && n >= o2 + t2.Size()
2281 && disjoint(src1, n, op, t2.Size())
2282 && clobber(store)
2283 => (Move {t1} [n] dst1 src1 mem)
2284
2285 // Don't Move to variables that are immediately completely overwritten.
2286 (Zero {t} [n] dst1 move:(Move {t} [n] dst2 _ mem))
2287 && move.Uses == 1
2288 && isSamePtr(dst1, dst2)
2289 && clobber(move)
2290 => (Zero {t} [n] dst1 mem)
2291 (Move {t} [n] dst1 src1 move:(Move {t} [n] dst2 _ mem))
2292 && move.Uses == 1
2293 && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n)
2294 && clobber(move)
2295 => (Move {t} [n] dst1 src1 mem)
2296 (Zero {t} [n] dst1 vardef:(VarDef {x} move:(Move {t} [n] dst2 _ mem)))
2297 && move.Uses == 1 && vardef.Uses == 1
2298 && isSamePtr(dst1, dst2)
2299 && clobber(move, vardef)
2300 => (Zero {t} [n] dst1 (VarDef {x} mem))
2301 (Move {t} [n] dst1 src1 vardef:(VarDef {x} move:(Move {t} [n] dst2 _ mem)))
2302 && move.Uses == 1 && vardef.Uses == 1
2303 && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n)
2304 && clobber(move, vardef)
2305 => (Move {t} [n] dst1 src1 (VarDef {x} mem))
2306 (Store {t1} op1:(OffPtr [o1] p1) d1
2307 m2:(Store {t2} op2:(OffPtr [0] p2) d2
2308 m3:(Move [n] p3 _ mem)))
2309 && m2.Uses == 1 && m3.Uses == 1
2310 && o1 == t2.Size()
2311 && n == t2.Size() + t1.Size()
2312 && isSamePtr(p1, p2) && isSamePtr(p2, p3)
2313 && clobber(m2, m3)
2314 => (Store {t1} op1 d1 (Store {t2} op2 d2 mem))
2315 (Store {t1} op1:(OffPtr [o1] p1) d1
2316 m2:(Store {t2} op2:(OffPtr [o2] p2) d2
2317 m3:(Store {t3} op3:(OffPtr [0] p3) d3
2318 m4:(Move [n] p4 _ mem))))
2319 && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1
2320 && o2 == t3.Size()
2321 && o1-o2 == t2.Size()
2322 && n == t3.Size() + t2.Size() + t1.Size()
2323 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
2324 && clobber(m2, m3, m4)
2325 => (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 mem)))
2326 (Store {t1} op1:(OffPtr [o1] p1) d1
2327 m2:(Store {t2} op2:(OffPtr [o2] p2) d2
2328 m3:(Store {t3} op3:(OffPtr [o3] p3) d3
2329 m4:(Store {t4} op4:(OffPtr [0] p4) d4
2330 m5:(Move [n] p5 _ mem)))))
2331 && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 && m5.Uses == 1
2332 && o3 == t4.Size()
2333 && o2-o3 == t3.Size()
2334 && o1-o2 == t2.Size()
2335 && n == t4.Size() + t3.Size() + t2.Size() + t1.Size()
2336 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
2337 && clobber(m2, m3, m4, m5)
2338 => (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 (Store {t4} op4 d4 mem))))
2339
2340 // Don't Zero variables that are immediately completely overwritten
2341 // before being accessed.
2342 (Move {t} [n] dst1 src1 zero:(Zero {t} [n] dst2 mem))
2343 && zero.Uses == 1
2344 && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n)
2345 && clobber(zero)
2346 => (Move {t} [n] dst1 src1 mem)
2347 (Move {t} [n] dst1 src1 vardef:(VarDef {x} zero:(Zero {t} [n] dst2 mem)))
2348 && zero.Uses == 1 && vardef.Uses == 1
2349 && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n)
2350 && clobber(zero, vardef)
2351 => (Move {t} [n] dst1 src1 (VarDef {x} mem))
2352 (Store {t1} op1:(OffPtr [o1] p1) d1
2353 m2:(Store {t2} op2:(OffPtr [0] p2) d2
2354 m3:(Zero [n] p3 mem)))
2355 && m2.Uses == 1 && m3.Uses == 1
2356 && o1 == t2.Size()
2357 && n == t2.Size() + t1.Size()
2358 && isSamePtr(p1, p2) && isSamePtr(p2, p3)
2359 && clobber(m2, m3)
2360 => (Store {t1} op1 d1 (Store {t2} op2 d2 mem))
2361 (Store {t1} op1:(OffPtr [o1] p1) d1
2362 m2:(Store {t2} op2:(OffPtr [o2] p2) d2
2363 m3:(Store {t3} op3:(OffPtr [0] p3) d3
2364 m4:(Zero [n] p4 mem))))
2365 && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1
2366 && o2 == t3.Size()
2367 && o1-o2 == t2.Size()
2368 && n == t3.Size() + t2.Size() + t1.Size()
2369 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
2370 && clobber(m2, m3, m4)
2371 => (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 mem)))
2372 (Store {t1} op1:(OffPtr [o1] p1) d1
2373 m2:(Store {t2} op2:(OffPtr [o2] p2) d2
2374 m3:(Store {t3} op3:(OffPtr [o3] p3) d3
2375 m4:(Store {t4} op4:(OffPtr [0] p4) d4
2376 m5:(Zero [n] p5 mem)))))
2377 && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 && m5.Uses == 1
2378 && o3 == t4.Size()
2379 && o2-o3 == t3.Size()
2380 && o1-o2 == t2.Size()
2381 && n == t4.Size() + t3.Size() + t2.Size() + t1.Size()
2382 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
2383 && clobber(m2, m3, m4, m5)
2384 => (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 (Store {t4} op4 d4 mem))))
2385
2386 // Don't Move from memory if the values are likely to already be
2387 // in registers.
2388 (Move {t1} [n] dst p1
2389 mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
2390 (Store {t3} op3:(OffPtr <tt3> [0] p3) d2 _)))
2391 && isSamePtr(p1, p2) && isSamePtr(p2, p3)
2392 && t2.Alignment() <= t1.Alignment()
2393 && t3.Alignment() <= t1.Alignment()
2394 && registerizable(b, t2)
2395 && registerizable(b, t3)
2396 && o2 == t3.Size()
2397 && n == t2.Size() + t3.Size()
2398 => (Store {t2} (OffPtr <tt2> [o2] dst) d1
2399 (Store {t3} (OffPtr <tt3> [0] dst) d2 mem))
2400 (Move {t1} [n] dst p1
2401 mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
2402 (Store {t3} op3:(OffPtr <tt3> [o3] p3) d2
2403 (Store {t4} op4:(OffPtr <tt4> [0] p4) d3 _))))
2404 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
2405 && t2.Alignment() <= t1.Alignment()
2406 && t3.Alignment() <= t1.Alignment()
2407 && t4.Alignment() <= t1.Alignment()
2408 && registerizable(b, t2)
2409 && registerizable(b, t3)
2410 && registerizable(b, t4)
2411 && o3 == t4.Size()
2412 && o2-o3 == t3.Size()
2413 && n == t2.Size() + t3.Size() + t4.Size()
2414 => (Store {t2} (OffPtr <tt2> [o2] dst) d1
2415 (Store {t3} (OffPtr <tt3> [o3] dst) d2
2416 (Store {t4} (OffPtr <tt4> [0] dst) d3 mem)))
2417 (Move {t1} [n] dst p1
2418 mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
2419 (Store {t3} op3:(OffPtr <tt3> [o3] p3) d2
2420 (Store {t4} op4:(OffPtr <tt4> [o4] p4) d3
2421 (Store {t5} op5:(OffPtr <tt5> [0] p5) d4 _)))))
2422 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
2423 && t2.Alignment() <= t1.Alignment()
2424 && t3.Alignment() <= t1.Alignment()
2425 && t4.Alignment() <= t1.Alignment()
2426 && t5.Alignment() <= t1.Alignment()
2427 && registerizable(b, t2)
2428 && registerizable(b, t3)
2429 && registerizable(b, t4)
2430 && registerizable(b, t5)
2431 && o4 == t5.Size()
2432 && o3-o4 == t4.Size()
2433 && o2-o3 == t3.Size()
2434 && n == t2.Size() + t3.Size() + t4.Size() + t5.Size()
2435 => (Store {t2} (OffPtr <tt2> [o2] dst) d1
2436 (Store {t3} (OffPtr <tt3> [o3] dst) d2
2437 (Store {t4} (OffPtr <tt4> [o4] dst) d3
2438 (Store {t5} (OffPtr <tt5> [0] dst) d4 mem))))
2439
2440 // Same thing but with VarDef in the middle.
2441 (Move {t1} [n] dst p1
2442 mem:(VarDef
2443 (Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
2444 (Store {t3} op3:(OffPtr <tt3> [0] p3) d2 _))))
2445 && isSamePtr(p1, p2) && isSamePtr(p2, p3)
2446 && t2.Alignment() <= t1.Alignment()
2447 && t3.Alignment() <= t1.Alignment()
2448 && registerizable(b, t2)
2449 && registerizable(b, t3)
2450 && o2 == t3.Size()
2451 && n == t2.Size() + t3.Size()
2452 => (Store {t2} (OffPtr <tt2> [o2] dst) d1
2453 (Store {t3} (OffPtr <tt3> [0] dst) d2 mem))
2454 (Move {t1} [n] dst p1
2455 mem:(VarDef
2456 (Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
2457 (Store {t3} op3:(OffPtr <tt3> [o3] p3) d2
2458 (Store {t4} op4:(OffPtr <tt4> [0] p4) d3 _)))))
2459 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
2460 && t2.Alignment() <= t1.Alignment()
2461 && t3.Alignment() <= t1.Alignment()
2462 && t4.Alignment() <= t1.Alignment()
2463 && registerizable(b, t2)
2464 && registerizable(b, t3)
2465 && registerizable(b, t4)
2466 && o3 == t4.Size()
2467 && o2-o3 == t3.Size()
2468 && n == t2.Size() + t3.Size() + t4.Size()
2469 => (Store {t2} (OffPtr <tt2> [o2] dst) d1
2470 (Store {t3} (OffPtr <tt3> [o3] dst) d2
2471 (Store {t4} (OffPtr <tt4> [0] dst) d3 mem)))
2472 (Move {t1} [n] dst p1
2473 mem:(VarDef
2474 (Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
2475 (Store {t3} op3:(OffPtr <tt3> [o3] p3) d2
2476 (Store {t4} op4:(OffPtr <tt4> [o4] p4) d3
2477 (Store {t5} op5:(OffPtr <tt5> [0] p5) d4 _))))))
2478 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
2479 && t2.Alignment() <= t1.Alignment()
2480 && t3.Alignment() <= t1.Alignment()
2481 && t4.Alignment() <= t1.Alignment()
2482 && t5.Alignment() <= t1.Alignment()
2483 && registerizable(b, t2)
2484 && registerizable(b, t3)
2485 && registerizable(b, t4)
2486 && registerizable(b, t5)
2487 && o4 == t5.Size()
2488 && o3-o4 == t4.Size()
2489 && o2-o3 == t3.Size()
2490 && n == t2.Size() + t3.Size() + t4.Size() + t5.Size()
2491 => (Store {t2} (OffPtr <tt2> [o2] dst) d1
2492 (Store {t3} (OffPtr <tt3> [o3] dst) d2
2493 (Store {t4} (OffPtr <tt4> [o4] dst) d3
2494 (Store {t5} (OffPtr <tt5> [0] dst) d4 mem))))
2495
2496 // Prefer to Zero and Store than to Move.
2497 (Move {t1} [n] dst p1
2498 mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
2499 (Zero {t3} [n] p3 _)))
2500 && isSamePtr(p1, p2) && isSamePtr(p2, p3)
2501 && t2.Alignment() <= t1.Alignment()
2502 && t3.Alignment() <= t1.Alignment()
2503 && registerizable(b, t2)
2504 && n >= o2 + t2.Size()
2505 => (Store {t2} (OffPtr <tt2> [o2] dst) d1
2506 (Zero {t1} [n] dst mem))
2507 (Move {t1} [n] dst p1
2508 mem:(Store {t2} (OffPtr <tt2> [o2] p2) d1
2509 (Store {t3} (OffPtr <tt3> [o3] p3) d2
2510 (Zero {t4} [n] p4 _))))
2511 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
2512 && t2.Alignment() <= t1.Alignment()
2513 && t3.Alignment() <= t1.Alignment()
2514 && t4.Alignment() <= t1.Alignment()
2515 && registerizable(b, t2)
2516 && registerizable(b, t3)
2517 && n >= o2 + t2.Size()
2518 && n >= o3 + t3.Size()
2519 => (Store {t2} (OffPtr <tt2> [o2] dst) d1
2520 (Store {t3} (OffPtr <tt3> [o3] dst) d2
2521 (Zero {t1} [n] dst mem)))
2522 (Move {t1} [n] dst p1
2523 mem:(Store {t2} (OffPtr <tt2> [o2] p2) d1
2524 (Store {t3} (OffPtr <tt3> [o3] p3) d2
2525 (Store {t4} (OffPtr <tt4> [o4] p4) d3
2526 (Zero {t5} [n] p5 _)))))
2527 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
2528 && t2.Alignment() <= t1.Alignment()
2529 && t3.Alignment() <= t1.Alignment()
2530 && t4.Alignment() <= t1.Alignment()
2531 && t5.Alignment() <= t1.Alignment()
2532 && registerizable(b, t2)
2533 && registerizable(b, t3)
2534 && registerizable(b, t4)
2535 && n >= o2 + t2.Size()
2536 && n >= o3 + t3.Size()
2537 && n >= o4 + t4.Size()
2538 => (Store {t2} (OffPtr <tt2> [o2] dst) d1
2539 (Store {t3} (OffPtr <tt3> [o3] dst) d2
2540 (Store {t4} (OffPtr <tt4> [o4] dst) d3
2541 (Zero {t1} [n] dst mem))))
2542 (Move {t1} [n] dst p1
2543 mem:(Store {t2} (OffPtr <tt2> [o2] p2) d1
2544 (Store {t3} (OffPtr <tt3> [o3] p3) d2
2545 (Store {t4} (OffPtr <tt4> [o4] p4) d3
2546 (Store {t5} (OffPtr <tt5> [o5] p5) d4
2547 (Zero {t6} [n] p6 _))))))
2548 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && isSamePtr(p5, p6)
2549 && t2.Alignment() <= t1.Alignment()
2550 && t3.Alignment() <= t1.Alignment()
2551 && t4.Alignment() <= t1.Alignment()
2552 && t5.Alignment() <= t1.Alignment()
2553 && t6.Alignment() <= t1.Alignment()
2554 && registerizable(b, t2)
2555 && registerizable(b, t3)
2556 && registerizable(b, t4)
2557 && registerizable(b, t5)
2558 && n >= o2 + t2.Size()
2559 && n >= o3 + t3.Size()
2560 && n >= o4 + t4.Size()
2561 && n >= o5 + t5.Size()
2562 => (Store {t2} (OffPtr <tt2> [o2] dst) d1
2563 (Store {t3} (OffPtr <tt3> [o3] dst) d2
2564 (Store {t4} (OffPtr <tt4> [o4] dst) d3
2565 (Store {t5} (OffPtr <tt5> [o5] dst) d4
2566 (Zero {t1} [n] dst mem)))))
2567 (Move {t1} [n] dst p1
2568 mem:(VarDef
2569 (Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
2570 (Zero {t3} [n] p3 _))))
2571 && isSamePtr(p1, p2) && isSamePtr(p2, p3)
2572 && t2.Alignment() <= t1.Alignment()
2573 && t3.Alignment() <= t1.Alignment()
2574 && registerizable(b, t2)
2575 && n >= o2 + t2.Size()
2576 => (Store {t2} (OffPtr <tt2> [o2] dst) d1
2577 (Zero {t1} [n] dst mem))
2578 (Move {t1} [n] dst p1
2579 mem:(VarDef
2580 (Store {t2} (OffPtr <tt2> [o2] p2) d1
2581 (Store {t3} (OffPtr <tt3> [o3] p3) d2
2582 (Zero {t4} [n] p4 _)))))
2583 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
2584 && t2.Alignment() <= t1.Alignment()
2585 && t3.Alignment() <= t1.Alignment()
2586 && t4.Alignment() <= t1.Alignment()
2587 && registerizable(b, t2)
2588 && registerizable(b, t3)
2589 && n >= o2 + t2.Size()
2590 && n >= o3 + t3.Size()
2591 => (Store {t2} (OffPtr <tt2> [o2] dst) d1
2592 (Store {t3} (OffPtr <tt3> [o3] dst) d2
2593 (Zero {t1} [n] dst mem)))
2594 (Move {t1} [n] dst p1
2595 mem:(VarDef
2596 (Store {t2} (OffPtr <tt2> [o2] p2) d1
2597 (Store {t3} (OffPtr <tt3> [o3] p3) d2
2598 (Store {t4} (OffPtr <tt4> [o4] p4) d3
2599 (Zero {t5} [n] p5 _))))))
2600 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
2601 && t2.Alignment() <= t1.Alignment()
2602 && t3.Alignment() <= t1.Alignment()
2603 && t4.Alignment() <= t1.Alignment()
2604 && t5.Alignment() <= t1.Alignment()
2605 && registerizable(b, t2)
2606 && registerizable(b, t3)
2607 && registerizable(b, t4)
2608 && n >= o2 + t2.Size()
2609 && n >= o3 + t3.Size()
2610 && n >= o4 + t4.Size()
2611 => (Store {t2} (OffPtr <tt2> [o2] dst) d1
2612 (Store {t3} (OffPtr <tt3> [o3] dst) d2
2613 (Store {t4} (OffPtr <tt4> [o4] dst) d3
2614 (Zero {t1} [n] dst mem))))
2615 (Move {t1} [n] dst p1
2616 mem:(VarDef
2617 (Store {t2} (OffPtr <tt2> [o2] p2) d1
2618 (Store {t3} (OffPtr <tt3> [o3] p3) d2
2619 (Store {t4} (OffPtr <tt4> [o4] p4) d3
2620 (Store {t5} (OffPtr <tt5> [o5] p5) d4
2621 (Zero {t6} [n] p6 _)))))))
2622 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && isSamePtr(p5, p6)
2623 && t2.Alignment() <= t1.Alignment()
2624 && t3.Alignment() <= t1.Alignment()
2625 && t4.Alignment() <= t1.Alignment()
2626 && t5.Alignment() <= t1.Alignment()
2627 && t6.Alignment() <= t1.Alignment()
2628 && registerizable(b, t2)
2629 && registerizable(b, t3)
2630 && registerizable(b, t4)
2631 && registerizable(b, t5)
2632 && n >= o2 + t2.Size()
2633 && n >= o3 + t3.Size()
2634 && n >= o4 + t4.Size()
2635 && n >= o5 + t5.Size()
2636 => (Store {t2} (OffPtr <tt2> [o2] dst) d1
2637 (Store {t3} (OffPtr <tt3> [o3] dst) d2
2638 (Store {t4} (OffPtr <tt4> [o4] dst) d3
2639 (Store {t5} (OffPtr <tt5> [o5] dst) d4
2640 (Zero {t1} [n] dst mem)))))
2641
2642 (SelectN [0] call:(StaticLECall {sym} a x)) && needRaceCleanup(sym, call) && clobber(call) => x
2643 (SelectN [0] call:(StaticLECall {sym} x)) && needRaceCleanup(sym, call) && clobber(call) => x
2644
2645 // When rewriting append to growslice, we use as the new length the result of
2646 // growslice so that we don't have to spill/restore the new length around the growslice call.
2647 // The exception here is that if the new length is a constant, avoiding spilling it
2648 // is pointless and its constantness is sometimes useful for subsequent optimizations.
2649 // See issue 56440.
2650 // Note there are 2 rules here, one for the pre-decomposed []T result and one for
2651 // the post-decomposed (*T,int,int) result. (The latter is generated after call expansion.)
2652 (SliceLen (SelectN [0] (StaticLECall {sym} _ newLen:(Const(64|32)) _ _ _ _))) && isSameCall(sym, "runtime.growslice") => newLen
2653 (SelectN [1] (StaticCall {sym} _ newLen:(Const(64|32)) _ _ _ _)) && v.Type.IsInteger() && isSameCall(sym, "runtime.growslice") => newLen
2654
2655 // Collapse moving A -> B -> C into just A -> C.
2656 // Later passes (deadstore, elim unread auto) will remove the A -> B move, if possible.
2657 // This happens most commonly when B is an autotmp inserted earlier
2658 // during compilation to ensure correctness.
2659 // Take care that overlapping moves are preserved.
2660 // Restrict this optimization to the stack, to avoid duplicating loads from the heap;
2661 // see CL 145208 for discussion.
2662 (Move {t1} [s] dst tmp1 midmem:(Move {t2} [s] tmp2 src _))
2663 && t1.Compare(t2) == types.CMPeq
2664 && isSamePtr(tmp1, tmp2)
2665 && isStackPtr(src) && !isVolatile(src)
2666 && disjoint(src, s, tmp2, s)
2667 && (disjoint(src, s, dst, s) || isInlinableMemmove(dst, src, s, config))
2668 => (Move {t1} [s] dst src midmem)
2669
2670 // Same, but for large types that require VarDefs.
2671 (Move {t1} [s] dst tmp1 midmem:(VarDef (Move {t2} [s] tmp2 src _)))
2672 && t1.Compare(t2) == types.CMPeq
2673 && isSamePtr(tmp1, tmp2)
2674 && isStackPtr(src) && !isVolatile(src)
2675 && disjoint(src, s, tmp2, s)
2676 && (disjoint(src, s, dst, s) || isInlinableMemmove(dst, src, s, config))
2677 => (Move {t1} [s] dst src midmem)
2678
2679 // Don't zero the same bits twice.
2680 (Zero {t} [s] dst1 zero:(Zero {t} [s] dst2 _)) && isSamePtr(dst1, dst2) => zero
2681 (Zero {t} [s] dst1 vardef:(VarDef (Zero {t} [s] dst2 _))) && isSamePtr(dst1, dst2) => vardef
2682
2683 // Elide self-moves. This only happens rarely (e.g test/fixedbugs/bug277.go).
2684 // However, this rule is needed to prevent the previous rule from looping forever in such cases.
2685 (Move dst src mem) && isSamePtr(dst, src) => mem
2686
2687 // Constant rotate detection.
2688 ((Add64|Or64|Xor64) (Lsh64x64 x z:(Const64 <t> [c])) (Rsh64Ux64 x (Const64 [d]))) && c < 64 && d == 64-c && canRotate(config, 64) => (RotateLeft64 x z)
2689 ((Add32|Or32|Xor32) (Lsh32x64 x z:(Const64 <t> [c])) (Rsh32Ux64 x (Const64 [d]))) && c < 32 && d == 32-c && canRotate(config, 32) => (RotateLeft32 x z)
2690 ((Add16|Or16|Xor16) (Lsh16x64 x z:(Const64 <t> [c])) (Rsh16Ux64 x (Const64 [d]))) && c < 16 && d == 16-c && canRotate(config, 16) => (RotateLeft16 x z)
2691 ((Add8|Or8|Xor8) (Lsh8x64 x z:(Const64 <t> [c])) (Rsh8Ux64 x (Const64 [d]))) && c < 8 && d == 8-c && canRotate(config, 8) => (RotateLeft8 x z)
2692
2693 // Non-constant rotate detection.
2694 // We use shiftIsBounded to make sure that neither of the shifts are >64.
2695 // Note: these rules are subtle when the shift amounts are 0/64, as Go shifts
2696 // are different from most native shifts. But it works out.
2697 ((Add64|Or64|Xor64) left:(Lsh64x64 x y) right:(Rsh64Ux64 x (Sub64 (Const64 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x y)
2698 ((Add64|Or64|Xor64) left:(Lsh64x32 x y) right:(Rsh64Ux32 x (Sub32 (Const32 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x y)
2699 ((Add64|Or64|Xor64) left:(Lsh64x16 x y) right:(Rsh64Ux16 x (Sub16 (Const16 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x y)
2700 ((Add64|Or64|Xor64) left:(Lsh64x8 x y) right:(Rsh64Ux8 x (Sub8 (Const8 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x y)
2701
2702 ((Add64|Or64|Xor64) right:(Rsh64Ux64 x y) left:(Lsh64x64 x z:(Sub64 (Const64 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x z)
2703 ((Add64|Or64|Xor64) right:(Rsh64Ux32 x y) left:(Lsh64x32 x z:(Sub32 (Const32 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x z)
2704 ((Add64|Or64|Xor64) right:(Rsh64Ux16 x y) left:(Lsh64x16 x z:(Sub16 (Const16 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x z)
2705 ((Add64|Or64|Xor64) right:(Rsh64Ux8 x y) left:(Lsh64x8 x z:(Sub8 (Const8 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x z)
2706
2707 ((Add32|Or32|Xor32) left:(Lsh32x64 x y) right:(Rsh32Ux64 x (Sub64 (Const64 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x y)
2708 ((Add32|Or32|Xor32) left:(Lsh32x32 x y) right:(Rsh32Ux32 x (Sub32 (Const32 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x y)
2709 ((Add32|Or32|Xor32) left:(Lsh32x16 x y) right:(Rsh32Ux16 x (Sub16 (Const16 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x y)
2710 ((Add32|Or32|Xor32) left:(Lsh32x8 x y) right:(Rsh32Ux8 x (Sub8 (Const8 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x y)
2711
2712 ((Add32|Or32|Xor32) right:(Rsh32Ux64 x y) left:(Lsh32x64 x z:(Sub64 (Const64 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x z)
2713 ((Add32|Or32|Xor32) right:(Rsh32Ux32 x y) left:(Lsh32x32 x z:(Sub32 (Const32 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x z)
2714 ((Add32|Or32|Xor32) right:(Rsh32Ux16 x y) left:(Lsh32x16 x z:(Sub16 (Const16 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x z)
2715 ((Add32|Or32|Xor32) right:(Rsh32Ux8 x y) left:(Lsh32x8 x z:(Sub8 (Const8 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x z)
2716
2717 ((Add16|Or16|Xor16) left:(Lsh16x64 x y) right:(Rsh16Ux64 x (Sub64 (Const64 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x y)
2718 ((Add16|Or16|Xor16) left:(Lsh16x32 x y) right:(Rsh16Ux32 x (Sub32 (Const32 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x y)
2719 ((Add16|Or16|Xor16) left:(Lsh16x16 x y) right:(Rsh16Ux16 x (Sub16 (Const16 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x y)
2720 ((Add16|Or16|Xor16) left:(Lsh16x8 x y) right:(Rsh16Ux8 x (Sub8 (Const8 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x y)
2721
2722 ((Add16|Or16|Xor16) right:(Rsh16Ux64 x y) left:(Lsh16x64 x z:(Sub64 (Const64 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x z)
2723 ((Add16|Or16|Xor16) right:(Rsh16Ux32 x y) left:(Lsh16x32 x z:(Sub32 (Const32 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x z)
2724 ((Add16|Or16|Xor16) right:(Rsh16Ux16 x y) left:(Lsh16x16 x z:(Sub16 (Const16 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x z)
2725 ((Add16|Or16|Xor16) right:(Rsh16Ux8 x y) left:(Lsh16x8 x z:(Sub8 (Const8 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x z)
2726
2727 ((Add8|Or8|Xor8) left:(Lsh8x64 x y) right:(Rsh8Ux64 x (Sub64 (Const64 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x y)
2728 ((Add8|Or8|Xor8) left:(Lsh8x32 x y) right:(Rsh8Ux32 x (Sub32 (Const32 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x y)
2729 ((Add8|Or8|Xor8) left:(Lsh8x16 x y) right:(Rsh8Ux16 x (Sub16 (Const16 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x y)
2730 ((Add8|Or8|Xor8) left:(Lsh8x8 x y) right:(Rsh8Ux8 x (Sub8 (Const8 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x y)
2731
2732 ((Add8|Or8|Xor8) right:(Rsh8Ux64 x y) left:(Lsh8x64 x z:(Sub64 (Const64 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x z)
2733 ((Add8|Or8|Xor8) right:(Rsh8Ux32 x y) left:(Lsh8x32 x z:(Sub32 (Const32 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x z)
2734 ((Add8|Or8|Xor8) right:(Rsh8Ux16 x y) left:(Lsh8x16 x z:(Sub16 (Const16 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x z)
2735 ((Add8|Or8|Xor8) right:(Rsh8Ux8 x y) left:(Lsh8x8 x z:(Sub8 (Const8 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x z)
2736
2737 // Rotating by y&c, with c a mask that doesn't change the bottom bits, is the same as rotating by y.
2738 (RotateLeft64 x (And(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&63 == 63 => (RotateLeft64 x y)
2739 (RotateLeft32 x (And(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&31 == 31 => (RotateLeft32 x y)
2740 (RotateLeft16 x (And(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&15 == 15 => (RotateLeft16 x y)
2741 (RotateLeft8 x (And(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&7 == 7 => (RotateLeft8 x y)
2742
2743 // Rotating by -(y&c), with c a mask that doesn't change the bottom bits, is the same as rotating by -y.
2744 (RotateLeft64 x (Neg(64|32|16|8) (And(64|32|16|8) y (Const(64|32|16|8) [c])))) && c&63 == 63 => (RotateLeft64 x (Neg(64|32|16|8) <y.Type> y))
2745 (RotateLeft32 x (Neg(64|32|16|8) (And(64|32|16|8) y (Const(64|32|16|8) [c])))) && c&31 == 31 => (RotateLeft32 x (Neg(64|32|16|8) <y.Type> y))
2746 (RotateLeft16 x (Neg(64|32|16|8) (And(64|32|16|8) y (Const(64|32|16|8) [c])))) && c&15 == 15 => (RotateLeft16 x (Neg(64|32|16|8) <y.Type> y))
2747 (RotateLeft8 x (Neg(64|32|16|8) (And(64|32|16|8) y (Const(64|32|16|8) [c])))) && c&7 == 7 => (RotateLeft8 x (Neg(64|32|16|8) <y.Type> y))
2748
2749 // Rotating by y+c, with c a multiple of the value width, is the same as rotating by y.
2750 (RotateLeft64 x (Add(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&63 == 0 => (RotateLeft64 x y)
2751 (RotateLeft32 x (Add(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&31 == 0 => (RotateLeft32 x y)
2752 (RotateLeft16 x (Add(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&15 == 0 => (RotateLeft16 x y)
2753 (RotateLeft8 x (Add(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&7 == 0 => (RotateLeft8 x y)
2754
2755 // Rotating by c-y, with c a multiple of the value width, is the same as rotating by -y.
2756 (RotateLeft64 x (Sub(64|32|16|8) (Const(64|32|16|8) [c]) y)) && c&63 == 0 => (RotateLeft64 x (Neg(64|32|16|8) <y.Type> y))
2757 (RotateLeft32 x (Sub(64|32|16|8) (Const(64|32|16|8) [c]) y)) && c&31 == 0 => (RotateLeft32 x (Neg(64|32|16|8) <y.Type> y))
2758 (RotateLeft16 x (Sub(64|32|16|8) (Const(64|32|16|8) [c]) y)) && c&15 == 0 => (RotateLeft16 x (Neg(64|32|16|8) <y.Type> y))
2759 (RotateLeft8 x (Sub(64|32|16|8) (Const(64|32|16|8) [c]) y)) && c&7 == 0 => (RotateLeft8 x (Neg(64|32|16|8) <y.Type> y))
2760
2761 // Ensure we don't do Const64 rotates in a 32-bit system.
2762 (RotateLeft64 x (Const64 <t> [c])) && config.PtrSize == 4 => (RotateLeft64 x (Const32 <t> [int32(c)]))
2763 (RotateLeft32 x (Const64 <t> [c])) && config.PtrSize == 4 => (RotateLeft32 x (Const32 <t> [int32(c)]))
2764 (RotateLeft16 x (Const64 <t> [c])) && config.PtrSize == 4 => (RotateLeft16 x (Const32 <t> [int32(c)]))
2765 (RotateLeft8 x (Const64 <t> [c])) && config.PtrSize == 4 => (RotateLeft8 x (Const32 <t> [int32(c)]))
2766
2767 // Rotating by c, then by d, is the same as rotating by c+d.
2768 // We're trading a rotate for an add, which seems generally a good choice. It is especially good when c and d are constants.
2769 // This rule is a bit tricky as c and d might be different widths. We handle only cases where they are the same width.
2770 (RotateLeft(64|32|16|8) (RotateLeft(64|32|16|8) x c) d) && c.Type.Size() == 8 && d.Type.Size() == 8 => (RotateLeft(64|32|16|8) x (Add64 <c.Type> c d))
2771 (RotateLeft(64|32|16|8) (RotateLeft(64|32|16|8) x c) d) && c.Type.Size() == 4 && d.Type.Size() == 4 => (RotateLeft(64|32|16|8) x (Add32 <c.Type> c d))
2772 (RotateLeft(64|32|16|8) (RotateLeft(64|32|16|8) x c) d) && c.Type.Size() == 2 && d.Type.Size() == 2 => (RotateLeft(64|32|16|8) x (Add16 <c.Type> c d))
2773 (RotateLeft(64|32|16|8) (RotateLeft(64|32|16|8) x c) d) && c.Type.Size() == 1 && d.Type.Size() == 1 => (RotateLeft(64|32|16|8) x (Add8 <c.Type> c d))
2774
2775 // Loading constant values from dictionaries and itabs.
2776 (Load <typ.BytePtr> (OffPtr [off] (Addr {s} sb) ) _) && isFixedSym(s, off) => (Addr {fixedSym(b.Func, s, off)} sb)
2777 (Load <typ.BytePtr> (OffPtr [off] (Convert (Addr {s} sb) _) ) _) && isFixedSym(s, off) => (Addr {fixedSym(b.Func, s, off)} sb)
2778 (Load <typ.BytePtr> (OffPtr [off] (ITab (IMake (Addr {s} sb) _))) _) && isFixedSym(s, off) => (Addr {fixedSym(b.Func, s, off)} sb)
2779 (Load <typ.BytePtr> (OffPtr [off] (ITab (IMake (Convert (Addr {s} sb) _) _))) _) && isFixedSym(s, off) => (Addr {fixedSym(b.Func, s, off)} sb)
2780 (Load <typ.Uintptr> (OffPtr [off] (Addr {s} sb) ) _) && isFixedSym(s, off) => (Addr {fixedSym(b.Func, s, off)} sb)
2781 (Load <typ.Uintptr> (OffPtr [off] (Convert (Addr {s} sb) _) ) _) && isFixedSym(s, off) => (Addr {fixedSym(b.Func, s, off)} sb)
2782 (Load <typ.Uintptr> (OffPtr [off] (ITab (IMake (Addr {s} sb) _))) _) && isFixedSym(s, off) => (Addr {fixedSym(b.Func, s, off)} sb)
2783 (Load <typ.Uintptr> (OffPtr [off] (ITab (IMake (Convert (Addr {s} sb) _) _))) _) && isFixedSym(s, off) => (Addr {fixedSym(b.Func, s, off)} sb)
2784
2785 // Loading constant values from runtime._type.hash.
2786 (Load <t> (OffPtr [off] (Addr {sym} _) ) _) && t.IsInteger() && t.Size() == 4 && isFixed32(config, sym, off) => (Const32 [fixed32(config, sym, off)])
2787 (Load <t> (OffPtr [off] (Convert (Addr {sym} _) _) ) _) && t.IsInteger() && t.Size() == 4 && isFixed32(config, sym, off) => (Const32 [fixed32(config, sym, off)])
2788 (Load <t> (OffPtr [off] (ITab (IMake (Addr {sym} _) _))) _) && t.IsInteger() && t.Size() == 4 && isFixed32(config, sym, off) => (Const32 [fixed32(config, sym, off)])
2789 (Load <t> (OffPtr [off] (ITab (IMake (Convert (Addr {sym} _) _) _))) _) && t.IsInteger() && t.Size() == 4 && isFixed32(config, sym, off) => (Const32 [fixed32(config, sym, off)])
2790
2791 // Calling cmpstring a second time with the same arguments in the
2792 // same memory state can reuse the results of the first call.
2793 // See issue 61725.
2794 // Note that this could pretty easily generalize to any pure function.
2795 (SelectN [0] (StaticLECall {f} x y (SelectN [1] c:(StaticLECall {g} x y mem))))
2796 && isSameCall(f, "runtime.cmpstring")
2797 && isSameCall(g, "runtime.cmpstring")
2798 => @c.Block (SelectN [0] <typ.Int> c)
2799
2800 // If we don't use the result of cmpstring, might as well not call it.
2801 // Note that this could pretty easily generalize to any pure function.
2802 (SelectN [1] c:(StaticLECall {f} _ _ mem)) && c.Uses == 1 && isSameCall(f, "runtime.cmpstring") && clobber(c) => mem
2803
2804 // We can easily compute the result of efaceeq if
2805 // we know the underlying type is pointer-ish.
2806 (StaticLECall {f} typ_ x y mem)
2807 && isSameCall(f, "runtime.efaceeq")
2808 && isDirectType(typ_)
2809 && clobber(v)
2810 => (MakeResult (EqPtr x y) mem)
2811
2812 // We can easily compute the result of ifaceeq if
2813 // we know the underlying type is pointer-ish.
2814 (StaticLECall {f} itab x y mem)
2815 && isSameCall(f, "runtime.ifaceeq")
2816 && isDirectIface(itab)
2817 && clobber(v)
2818 => (MakeResult (EqPtr x y) mem)
2819
2820 // If we use the result of slicebytetostring in a map lookup operation,
2821 // then we don't need to actually do the []byte->string conversion.
2822 // We can just use the ptr/len of the byte slice directly as a (temporary) string.
2823 //
2824 // Note that this does not handle some obscure cases like
2825 // m[[2]string{string(b1), string(b2)}]. There is code in ../walk/order.go
2826 // which handles some of those cases.
2827 (StaticLECall {f} [argsize] typ_ map_ key:(SelectN [0] sbts:(StaticLECall {g} _ ptr len mem)) m:(SelectN [1] sbts))
2828 && (isSameCall(f, "runtime.mapaccess1_faststr")
2829 || isSameCall(f, "runtime.mapaccess2_faststr")
2830 || isSameCall(f, "runtime.mapdelete_faststr"))
2831 && isSameCall(g, "runtime.slicebytetostring")
2832 && key.Uses == 1
2833 && sbts.Uses == 2
2834 && resetCopy(m, mem)
2835 && clobber(sbts)
2836 && clobber(key)
2837 => (StaticLECall {f} [argsize] typ_ map_ (StringMake <typ.String> ptr len) mem)
2838
2839 // Similarly to map lookups, also handle unique.Make for strings, which unique.Make will clone.
2840 (StaticLECall {f} [argsize] dict_ key:(SelectN [0] sbts:(StaticLECall {g} _ ptr len mem)) m:(SelectN [1] sbts))
2841 && isSameCall(f, "unique.Make[go.shape.string]")
2842 && isSameCall(g, "runtime.slicebytetostring")
2843 && key.Uses == 1
2844 && sbts.Uses == 2
2845 && resetCopy(m, mem)
2846 && clobber(sbts)
2847 && clobber(key)
2848 => (StaticLECall {f} [argsize] dict_ (StringMake <typ.String> ptr len) mem)
2849
2850 // Transform some CondSelect into math operations.
2851 // if b { x++ } => x += b // but not on arm64 because it has CSINC
2852 (CondSelect (Add8 <t> x (Const8 [1])) x bool) && config.arch != "arm64" => (Add8 x (CvtBoolToUint8 <t> bool))
2853 (CondSelect (Add(64|32|16) <t> x (Const(64|32|16) [1])) x bool) && config.arch != "arm64" => (Add(64|32|16) x (ZeroExt8to(64|32|16) <t> (CvtBoolToUint8 <types.Types[types.TUINT8]> bool)))
2854
2855 // if b { x-- } => x -= b
2856 (CondSelect (Add8 <t> x (Const8 [-1])) x bool) => (Sub8 x (CvtBoolToUint8 <t> bool))
2857 (CondSelect (Add(64|32|16) <t> x (Const(64|32|16) [-1])) x bool) => (Sub(64|32|16) x (ZeroExt8to(64|32|16) <t> (CvtBoolToUint8 <types.Types[types.TUINT8]> bool)))
2858
2859 // if b { x <<= 1 } => x <<= b
2860 (CondSelect (Lsh(64|32|16|8)x64 x (Const64 [1])) x bool) => (Lsh(64|32|16|8)x8 [true] x (CvtBoolToUint8 <types.Types[types.TUINT8]> bool))
2861
2862 // if b { x >>= 1 } => x >>= b
2863 (CondSelect (Rsh(64|32|16|8)x64 x (Const64 [1])) x bool) => (Rsh(64|32|16|8)x8 [true] x (CvtBoolToUint8 <types.Types[types.TUINT8]> bool))
2864 (CondSelect (Rsh(64|32|16|8)Ux64 x (Const64 [1])) x bool) => (Rsh(64|32|16|8)Ux8 [true] x (CvtBoolToUint8 <types.Types[types.TUINT8]> bool))
2865
View as plain text