
Prototype your design!

Robert Griesemer
dotGo 2016, Paris

1



Getting to good software design

● Literature is full of design paradigms

● Usually involves
○ Design docs
○ Feedback from reviewers
○ Iterative process
○ etc.

● Often a “dry” exercise
○ No software is created until design is “completed”
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How can we tell if we
have a good design?
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Elsewhere, design thinking requires prototyping
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Empathize

Define

Ideate

Test

From Design School Stanford: http://dschool.stanford.edu/

Try stuff
Reframe problems

Build your way forward!

Prototype



Example: Designing Go support for numerical apps

Multi-dimensional slices for Go
(issue #6282)

var matrix [,]float64

matrix = make([,]float64, 15, 11)
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j

matrix[i,j]
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High-level goals

1. More readable code
2. Great performance

Many open questions:

○ Which primitive operations?
○ What implementation?
○ What notation?
○ etc.
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Observation

We can implement many aspects of multi-dimensional slices in Go now:

● Slice representation
⇨ Define an (abstract data) type

● Creation, access, mutation
⇨ Define appropriate methods on that type

A Go implementation allows us to explore our design.
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Key missing feature: Nice notation

The work-around, accessor methods for multi-dim. index expressions

m.At(i, j)

m.AtSet(i, j, x)

makes numerical code clunky, perhaps even unreadable:

c.AtSet(i, j, a.At(i, k) * b.At(k, ind.At(j)))

instead of

c[i, j] = a[i, k] * b[k, ind[j]]
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How can we get around the notation problem?

● Declare it not a problem
○ Not an option

● Change the Go language for the experiment
○ Too costly

● Rewrite the source code:

a[i, j]  ⇨  a.At(i, j)

We can do this by hand, or automatically, via a source-to-source rewriter.
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A prototype allows us to 
explore the design space.
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Design the prototype

● Allow index operators as method names
○ [] indexed getter
○ []= indexed setter (assignment)
○ + addition (for illustration purposes only)

● Permit multiple indices in index expressions

● Semantics
○ x[i] means x.[](i)

○ x[i, j] means x.[](i, j)

○ x[i, j, k] = y means x.[]=(i, j, k, y)

○ x + y means x.+(y)
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Implement the prototype

● Rename method names into valid Go identifiers
○ [] ⇨ AT__

○ []= ⇨ ATSET__

○ + ⇨ ADD__

● Rewrite index expressions into valid Go method calls
○ x[i, j] ⇨ x.AT__(i, j)

○ x[i, j] = y ⇨ x.ATSET__(i, j, y)

○ x + y ⇨ x.ADD__(y)

● To rewrite source, rewrite syntax tree
○ original source → go/parser → rewriter → go/printer → rewritten source
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Example: Rewrite of + method
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BEFORE

type Point struct { X, Y int }

func (a Point) +(b Point) Point {

return Point{…}

}

var a, b, c Point

c := a + b

AFTER

type Point struct { X, Y int }

func (a Point) ADD__(b Point) Point {

return Point{…}

}

var a, b, c Point

c := a.ADD__(b)
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+

x y

.

x ADD__

y

CallExpr

x + y x.ADD__(y)

rewrite

Syntax tree rewriting

Trivial for method names.
Not so easy for operators:

Need to know left operand (receiver) type!



Type-checking to the rescue

Approach:
1. Use go/types to determine operands types
2. Rewrite x + y if type of x has ADD__ method

This works also for indexing operators.
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Syntax tree for x + y + z after parsing
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+

x y

+

z

z

We have no type information.



After type-checking

17

+

x y

+

z

z

T[x] T[y]

T[z]

T?

T?

Several unknown types;
assume it’s because x + y should be x.ADD__(y).



Rewrite where we can
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+

x y

.

x ADD__

y

CallExpr
+

z

+

z

z

T[x] T[y]

T[z]

T?

T?

Replace x + y with x.ADD__(y)
if type of x implements ADD__.



… and type-check again
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.

x ADD__

y

CallExpr z

z

T[x]

T[y]

T[x.ADD__(y)] T[z]

T? +

Still have unknown type;
do another round.



One more time: Determine what to rewrite

20

.

x ADD__

y

CallExpr

+

z

z

T[x]

T[y]

T[x.ADD__(y)] T[z]

T?

Replace (x.ADD__(y)) + z with
(x.ADD__(y)).ADD__(z)



… rewrite
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.

x ADD__

y

CallExpr

.

ADD__

z

CallExpr



… and type-check

22

.

x ADD__

y

CallExpr

.

ADD__

z

CallExpr

T[x]

T[y]

T[x.ADD__(y)]

T[z]

T[x.ADD__(y).ADD__(z)]

All types are known; we are done!



A concrete implementation
allows us to judge a design.
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An implementation of a 2D “slice”

type Matrix struct {
array       []float64
len, stride [2]int

}

func NewMatrix(n, m int) *Matrix
func (m *Matrix) []  (i, j int) float64
func (m *Matrix) []= (i, j int, x float64)
…

Easily generalized to other (1, 2, 3, …) dimensions.
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Core of (textbook) Matrix multiplication
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BEFORE

for i := 0; i < n; i++ {
for j := 0; j < p; j++ {

var t float64
for k := 0; k < m; k++ {

t += a[i, k] *
 b[k, j]

}
c[i, j] = t

}
}

AFTER

for i := 0; i < n; i++ {
for j := 0; j < p; j++ {

var t float64
for k := 0; k < m; k++ {

t += a.AT__(i, k) *
 b.AT__(k, j)

}
c.ATSET__(i, j, t)

}
}



Prototyping raises design 
questions we didn’t even 

know we should be asking.
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Are index operator methods good enough?

If the prototype works well, do we even need more?

Plenty of stuff to think about …
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Conclusion

● Go is a fantastic language for prototyping.

● Prototyping allows us to build our way to good design.

● If we can prototype language changes, we can prototype 
anything.
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Plan to throw one away;
you will, anyhow.
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F.P. Brooks, The Mythical Man-Month, 1975.



Thank you!
https://github.com/griesemer/dotGo2016/
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