
Prototype your design!

Robert Griesemer
dotGo 2016, Paris

1

Getting to good software design

● Literature is full of design paradigms

● Usually involves
○ Design docs
○ Feedback from reviewers
○ Iterative process
○ etc.

● Often a “dry” exercise
○ No software is created until design is “completed”

2

How can we tell if we
have a good design?

3

Elsewhere, design thinking requires prototyping

4

Empathize

Define

Ideate

Test

From Design School Stanford: http://dschool.stanford.edu/

Try stuff
Reframe problems

Build your way forward!

Prototype

Example: Designing Go support for numerical apps

Multi-dimensional slices for Go
(issue #6282)

var matrix [,]float64

matrix = make([,]float64, 15, 11)

5

j

matrix[i,j]

i

High-level goals

1. More readable code
2. Great performance

Many open questions:

○ Which primitive operations?
○ What implementation?
○ What notation?
○ etc.

6

Observation

We can implement many aspects of multi-dimensional slices in Go now:

● Slice representation
⇨ Define an (abstract data) type

● Creation, access, mutation
⇨ Define appropriate methods on that type

A Go implementation allows us to explore our design.

7

Key missing feature: Nice notation

The work-around, accessor methods for multi-dim. index expressions

m.At(i, j)

m.AtSet(i, j, x)

makes numerical code clunky, perhaps even unreadable:

c.AtSet(i, j, a.At(i, k) * b.At(k, ind.At(j)))

instead of

c[i, j] = a[i, k] * b[k, ind[j]]
8

How can we get around the notation problem?

● Declare it not a problem
○ Not an option

● Change the Go language for the experiment
○ Too costly

● Rewrite the source code:

a[i, j] ⇨ a.At(i, j)

We can do this by hand, or automatically, via a source-to-source rewriter.
9

A prototype allows us to
explore the design space.

10

Design the prototype

● Allow index operators as method names
○ [] indexed getter
○ []= indexed setter (assignment)
○ + addition (for illustration purposes only)

● Permit multiple indices in index expressions

● Semantics
○ x[i] means x.[](i)

○ x[i, j] means x.[](i, j)

○ x[i, j, k] = y means x.[]=(i, j, k, y)

○ x + y means x.+(y)
11

Implement the prototype

● Rename method names into valid Go identifiers
○ [] ⇨ AT__

○ []= ⇨ ATSET__

○ + ⇨ ADD__

● Rewrite index expressions into valid Go method calls
○ x[i, j] ⇨ x.AT__(i, j)

○ x[i, j] = y ⇨ x.ATSET__(i, j, y)

○ x + y ⇨ x.ADD__(y)

● To rewrite source, rewrite syntax tree
○ original source → go/parser → rewriter → go/printer → rewritten source

12

Example: Rewrite of + method

13

BEFORE

type Point struct { X, Y int }

func (a Point) +(b Point) Point {

return Point{…}

}

var a, b, c Point

c := a + b

AFTER

type Point struct { X, Y int }

func (a Point) ADD__(b Point) Point {

return Point{…}

}

var a, b, c Point

c := a.ADD__(b)

14

+

x y

.

x ADD__

y

CallExpr

x + y x.ADD__(y)

rewrite

Syntax tree rewriting

Trivial for method names.
Not so easy for operators:

Need to know left operand (receiver) type!

Type-checking to the rescue

Approach:
1. Use go/types to determine operands types
2. Rewrite x + y if type of x has ADD__ method

This works also for indexing operators.

15

Syntax tree for x + y + z after parsing

16

+

x y

+

z

z

We have no type information.

After type-checking

17

+

x y

+

z

z

T[x] T[y]

T[z]

T?

T?

Several unknown types;
assume it’s because x + y should be x.ADD__(y).

Rewrite where we can

18

+

x y

.

x ADD__

y

CallExpr
+

z

+

z

z

T[x] T[y]

T[z]

T?

T?

Replace x + y with x.ADD__(y)
if type of x implements ADD__.

… and type-check again

19

.

x ADD__

y

CallExpr z

z

T[x]

T[y]

T[x.ADD__(y)] T[z]

T? +

Still have unknown type;
do another round.

One more time: Determine what to rewrite

20

.

x ADD__

y

CallExpr

+

z

z

T[x]

T[y]

T[x.ADD__(y)] T[z]

T?

Replace (x.ADD__(y)) + z with
(x.ADD__(y)).ADD__(z)

… rewrite

21

.

x ADD__

y

CallExpr

.

ADD__

z

CallExpr

… and type-check

22

.

x ADD__

y

CallExpr

.

ADD__

z

CallExpr

T[x]

T[y]

T[x.ADD__(y)]

T[z]

T[x.ADD__(y).ADD__(z)]

All types are known; we are done!

A concrete implementation
allows us to judge a design.

23

An implementation of a 2D “slice”

type Matrix struct {
array []float64
len, stride [2]int

}

func NewMatrix(n, m int) *Matrix
func (m *Matrix) [] (i, j int) float64
func (m *Matrix) []= (i, j int, x float64)
…

Easily generalized to other (1, 2, 3, …) dimensions.
24

Core of (textbook) Matrix multiplication

25

BEFORE

for i := 0; i < n; i++ {
for j := 0; j < p; j++ {

var t float64
for k := 0; k < m; k++ {

t += a[i, k] *
 b[k, j]

}
c[i, j] = t

}
}

AFTER

for i := 0; i < n; i++ {
for j := 0; j < p; j++ {

var t float64
for k := 0; k < m; k++ {

t += a.AT__(i, k) *
 b.AT__(k, j)

}
c.ATSET__(i, j, t)

}
}

Prototyping raises design
questions we didn’t even

know we should be asking.

26

Are index operator methods good enough?

If the prototype works well, do we even need more?

Plenty of stuff to think about …

27

Conclusion

● Go is a fantastic language for prototyping.

● Prototyping allows us to build our way to good design.

● If we can prototype language changes, we can prototype
anything.

28

Plan to throw one away;
you will, anyhow.

29

F.P. Brooks, The Mythical Man-Month, 1975.

Thank you!
https://github.com/griesemer/dotGo2016/

30

