
Friday, May 21, 2010

Friday, May 21, 2010

Go Programming
Russ Cox and Rob Pike
May 20, 2010

Friday, May 21, 2010

Live waving

3

View live notes and ask questions about this session on
Google Wave:

http://bit.ly/go2010io

Friday, May 21, 2010

http://bit.ly/bz3Xu0
http://bit.ly/bz3Xu0

Go is different

4

Go is more unusual than you might first think.

Programming in Go is different from programming in most
procedural languages.

If you try to write Java* programs in Go, you may become
frustrated. If you write Go programs in Go, you will be much
more productive.

Our goal today is to teach you to think like a Go programmer.

*Sometimes we'll use Java as a reference for comparison but we could make the
same points comparing Go to a number of other languages.

Friday, May 21, 2010

Go is and Go is not

• Go is object-oriented not type-oriented
– inheritance is not primary
– methods on any type, but no classes or subclasses

• Go is (mostly) implicit not explicit
– types are inferred not declared
– objects have interfaces but they are derived, not specified

• Go is concurrent not parallel
– intended for program structure, not maximum performance
– but still can keep all the cores humming nicely
– ... and some programs are nicer even if not parallel at all

5

Friday, May 21, 2010

Friday, May 21, 2010

1: Evaluating expressions

Friday, May 21, 2010

A specification of behavior

7

Expression evaluators often define a type, called Value, as a
parent class with integers, strings, etc. as child classes.

In Go, we just specify what a Value needs to do. For our
simple example, that means: do binary operations and be
printable.

type Value interface {
 BinaryOp(op string, y Value) Value
 String() string
}

Implement those methods and you have a type that the
evaluator can use.

Friday, May 21, 2010

Integer values

8

Dead easy; just write the methods. (No extra bookkeeping.)

type Int int // A basic type (not a pointer, struct, or class).
func (x Int) String() string { return strconv.Itoa(int(x)) }
func (x Int) BinaryOp(op string, y Value) Value {
 switch y := y.(type) {
 case Int:
 switch op {
 case "+": return x + y
 case "-": return x - y
 case "*": return x * y
 ...
 }
 case Error: // defined on the next slide
 return y
 }
 return Error(fmt.Sprintf("illegal op: '%v %s %v'", x, op, y))
}

Friday, May 21, 2010

Errors

9

For error handling, define an Error type that satisfies Value
that will just propagate the error up the evaluation tree.

type Error string
func (e Error) String() string {
 return string(e)
}
func (e Error) BinaryOp(op string, y Value) Value {
 return e
}

No need for "implements" clauses or other annotations. Ints
and Errors are Values because they satisfy the Value
interface implicitly.

Friday, May 21, 2010

Input

10

We need a basic scanner to input values. Here's a simple one
that, given a string, returns a Value representing an integer or
error.

func newVal(lit string) Value {
 x, err := strconv.Atoi(lit)
 if err == nil {
 return Int(x)
 }
 return Error(fmt.Sprintf("illegal literal '%s'", lit))
}

The evaluator just tokenizes, parses and, in effect, calls

 fmt.Println(newVal("2").BinaryOp("+", newVal("4")).String())

Friday, May 21, 2010

Friday, May 21, 2010

Demo

Friday, May 21, 2010

Let's add strings

12

type String string
func (x String) String() string { return strconv.Quote(string(x)) }
func (x String) BinaryOp(op string, y Value) Value {
	 switch y := y.(type) {
	 case String:
	 	 switch op {
	 	 case "+": return x + y
	 	 	 ...
	 	 }
	 case Int:	 // String * Int
	 	 switch op {
	 	 case "*": return String(strings.Repeat(string(x), int(y)))
 ...
	 	 }
	 case Error:
	 	 return y
	 }
	 return Error(fmt.Sprintf("illegal op: '%v %s %v'", x, op, y))
}

Friday, May 21, 2010

String input

13

Just a few more lines in newVal.

func newVal(lit string) Value {
 x, err := strconv.Atoi(lit)
 if err == nil {
 return Int(x)
 }
 s, err := strconv.Unquote(lit)
 if err == nil {
 return String(s)
 }
 return Error(fmt.Sprintf("illegal literal '%s'", lit))
}

We've added strings by just adding strings. This happens
because of Go's implicit interface satisfaction. No retroactive
bookkeeping.

Friday, May 21, 2010

Friday, May 21, 2010

Demo

Friday, May 21, 2010

Objects but no hierarchy

15

In Java, the type hierarchy is the foundation of the program,
which can be hard to change as the design evolves. (Can be
easier to compromise the design than change the foundation.)

Programming in Go is not primarily about types and
inheritance. There is no type hierarchy. The most important
design decisions don't have to be made first, and it's easy to
change types as the program develops because the compiler
infers their relationships automatically.

Go programs are therefore more flexible and adaptable.

Friday, May 21, 2010

Friday, May 21, 2010

2: Not inheritance

Friday, May 21, 2010

Java: Compressing using Buffers, given byte[] (1)

17

Suppose we have a zlib compressor:

public static class ZlibCompressor {

 public int compress(byte[] in, int inOffset, int inLength,
 byte[] out, int outOffset) {
 ...
 }
 ...
}

and we want to support Buffer in a way that will generalize
to other compressors.

Friday, May 21, 2010

Java: Compressing using Buffers, given byte[] (2)

18

Define an abstract compressor class.

public abstract class AbstractCompressor {
 /** Compresses the input into the output buffer. */
 abstract int compress(byte[] in, int inOffset, int inLength,
 byte[] out, int outOffset);
 /**
 * Compresses byte buffers using abstract compress method.
 * Assumes Buffers are based on arrays.
 */
 public void compress(Buffer in, Buffer out) {
 int numWritten = compress(in.array(), in.arrayOffset() +
 in.position(), in.remaining(), out.array(),
 out.arrayOffset() + out.position());
 out.position(out.position() + numWritten);
 }
}

Friday, May 21, 2010

Java: Compressing using Buffers, given byte[] (3)

19

Subclass the abstract class to create a compression class.

public static class ZLibCompressor extends AbstractCompressor {

 public int compress(byte[] in, int inOffset, int inLength,
 byte[] out, int outOffset) {
 ...
 }
}

This is common Java style: Inherit the abstract behavior.

Friday, May 21, 2010

Go: Compressing using Buffers, given []byte (1)

20

Again, we have a zlib compressor:

type ZlibCompressor struct { ... }

func (c *ZlibCompressor) Compress(in, out []byte) int

Again, we want to support Buffer in a way that will generalize
to other compressors.

Friday, May 21, 2010

Go: Compressing using Buffers, given []byte (2)

21

Define an interface for the compressor and write a function.

type Compressor interface {
 Compress(in, out []byte) int
}

func CompressBuffer(c Compressor, in, out *Buffer) {
 n := c.Compress(in.Bytes(), out.Bytes())
 out.Advance(n)
}

This is good Go style: just use the abstract behavior.
It's easy and much less typing (in two senses).

You can use this approach in Java but it's not usual Java style.
Java (like many languages) puts type inheritance first.

Friday, May 21, 2010

Implicitness means flexibility

• In Go, could use as many wrappers as you like.
– A type can satisfy many interfaces and therefore be used by

any number of 'abstract wrappers' like CompressBuffer.

• In Java, can only extend one abstract class.
– Could use Java interfaces but still need to annotate the

original implementation — that is, edit the existing code.
– What if it's not yours to edit?

• In Go, Compressor's implementers do not need to know
about CompressBuffer or even the Compressor interface.
– The Buffer type might be private yet the type with the
Compress method could be in a standard library.

22

Friday, May 21, 2010

Friday, May 21, 2010

3: Lightweight interfaces

Friday, May 21, 2010

Interfaces are lightweight

• A typical Go interface has only one or two methods.
– (In fact, the commonest interface has zero, but that's

another story.)
• Programmers new to Go see interfaces as a building block
for type hierarchies and tend to create interfaces with many
methods.

• But that's the wrong way to think about them. They are:
– small
– nimble
– often ad hoc

24

Friday, May 21, 2010

Problem: Generalizing RPC

25

The RPC package in Go uses package gob to marshal objects
on the wire. We needed a variant that used JSON.

Abstract the codec into an interface:

type ServerCodec interface {
 ReadRequestHeader(*Request) os.Error
 ReadRequestBody(interface{}) os.Error
 WriteResponse(*Response, interface{}) os.Error
 Close() os.Error
}

Friday, May 21, 2010

Problem: Generalizing RPC

26

Two functions must change signature:

 func sendResponse(sending *sync.Mutex, req *Request,
 reply interface{}, enc *gob.Encoder, errmsg string)

becomes

 func sendResponse(sending *sync.Mutex, req *Request,
 reply interface{}, enc ServerCodec, errmsg string)

And similarly for requests.
That is almost the whole change to the RPC implementation.
The bodies of the functions needed a couple of tiny edits. In
other such examples, often no editing would be required.

We saw an opportunity: RPC needed only Read and Write
methods. Put those in an interface and you've got abstraction.
Post facto.

Friday, May 21, 2010

Total time: 20 minutes

27

And that includes writing and testing the JSON implementation
of the interface.

(We wrote a trivial gobServerCodec type to implement the new
rpc.ServerCodec interface.)

In Java, RPC would be refactored into a half-abstract class,
subclassed to create JsonRPC and GobRPC.

In Go, there is no need to manage a type hierarchy: just pass
in a codec interface stub (and nothing else).

Friday, May 21, 2010

Friday, May 21, 2010

4: Common interfaces

Friday, May 21, 2010

Post facto abstraction

29

In the previous example, we were in charge of all the pieces.

But it's common for interfaces to arise as codifications of
existing patterns.

Such interfaces often include only one or two methods:
io.Reader, io.Writer, etc.

It is vital that such interfaces do not need retrofitting to work
with existing code. They work automatically.

Friday, May 21, 2010

Simple interfaces are widely used

30

The type aes.Cipher has methods:
 func (c *Cipher) BlockSize() int // size of encryption unit
 func (c *Cipher) Decrypt(src, dst []byte) // decrypt one block
 func (c *Cipher) Encrypt(src, dst []byte) // encrypt one block

So do blowfish.Cipher, xtea.Cipher and others. We can
make ciphers interchangeable by defining an interface:

type Cipher interface {
 BlockSize() int
 Decrypt(src, dst []byte)
 Encrypt(src, dst []byte)
}

Friday, May 21, 2010

Chaining ciphers

31

We define block cipher modes using the interface.
// cipher-block chaining
func NewCBCDecrypter(c Cipher, iv []byte, r io.Reader) io.Reader

// cipher feedback
func NewCFBDecrypter(c Cipher, s int, iv []byte, r io.Reader)
 io.Reader
// output feedback
func NewOFBReader(c Cipher, iv []byte, r io.Reader) io.Reader

Want AES CBC mode?
 // (For brevity, we cheat a bit here about error handling)
 r = block.NewCBCDecrypter(aes.NewCipher(key), iv, r)

Blowfish CBC?
 r = block.NewCBCDecrypter(blowfish.NewCipher(key), iv, r)

No need for multiple CBC implementations.

Friday, May 21, 2010

Chain away

32

Libraries in other languages usually provide an API with the
cross product of all useful ciphers and chainers. Go just needs
to provide the building blocks.

And more! Decrypt and decompress by chaining further.
func DecryptAndGunzip(dstfile, srcfile string, key, iv []byte) {
 f := os.Open(srcfile, os.O_RDONLY, 0) // open source file
 defer f.Close()
 c := aes.NewCipher(key) // create cipher
 r := block.NewOFBReader(c, iv, f) // decrypting reader
 r = gzip.NewReader(r) // decompressing reader
 w := os.Open(dstfile, os.O_WRONLY | os.O_CREATE, 0666)
 defer w.Close()
 io.Copy(w, r) // copy to output
}

(Again, cheating a bit regarding error handling.)

Friday, May 21, 2010

Friday, May 21, 2010

5: Concurrency for structure

Friday, May 21, 2010

Concurrent programs

34

Java programmers use class hierarchies to structure their
programs.

Go's concurrency primitives provide the elements of another
approach.

It's not about parallelism. Concurrent programming allows
parallelism but that's not what it's really for.

It's about expressing program structure to represent
independently executing actions.

In short:
 - parallelism is about performance
 - concurrency is about program design

Friday, May 21, 2010

Example: a load balancer

35

Imagine you have many processes requesting actions and a
few workers that share the load. Assume workers are more
efficient if they batch many requests.

We want a load balancer that distributes the load fairly across
the workers according to their current workload.

In real life we'd distribute work across many machines, but for
simplicity we'll just focus on a local load balancer.

This is simplistic but representative of the core of a realistic
problem.

Friday, May 21, 2010

Life of a request

36

Requesters make a request to the load balancer.

Load balancer immediately sends the request to the most
lightly loaded worker.

When it completes the task the worker replies directly to the
requester.

Balancer adjusts its measure of the workloads.

Friday, May 21, 2010

A load balancer

37

Requester RequesterRequesterRequester

Worker WorkerWorkerWorkerTo Requester To Requester

... many more

Balancer

Friday, May 21, 2010

Requester

38

The requester sends Requests to the balancer.
type Request struct {
 fn func() int // The operation to perform
 c chan int // The channel on which to return the result
}

An artificial but illustrative simulation of a requester.

func requester(work chan Request) {
 c := make(chan int)
 for {
 time.Sleep(rand.Int63n(nWorker * 2e9)) // spend time
 work <- Request{workFn, c} // send request
 result := <-c // wait for answer
 furtherProcess(result)
	 }	
}

Friday, May 21, 2010

Worker

39

The balancer will send each request to the most lightly loaded
worker.
This is a simple version of a Worker but it's plausible.
func (w *Worker) work(done chan *Worker) {
 for {
 req := <-w.requests // get Request from load balancer
 req.c <- req.fn() // call fn and send result to requester
 done <- w // tell balancer we've finished this job
 }
}

The channel of requests (w.requests) delivers requests to
each worker. The balancer tracks the number of pending
requests as a measure of load.
Note that each response goes directly to its requester.

Friday, May 21, 2010

Balancer

40

The load balancer needs a pool of workers and a single
channel to which requesters can send work.
type Pool []*Worker
type Balancer struct {
	 pool Pool
	 done chan *Worker
}

At this point, the balancer is very easy.
func (b *Balancer) balance(work chan Request) {
 for {
 select {
 case req := <-work: // received a Request...
 b.dispatch(req) // ...so send it to a Worker
 case w := <-b.done: // a worker has finished a request...
 b.completed(w) // ...so update its info
 }
 }
}

Friday, May 21, 2010

A heap of channels

41

How do we implement dispatch and completed?

We can use a heap to choose the most lightly loaded worker
by attaching the necessary methods to type Pool (Len, Push,
Pop, Swap, Less). That's easy; here for instance is Less:
func (p Pool) Less(i, j int) bool {
 return p[i].pending < p[j].pending
}

And in each Worker, we keep a count of pending operations.
type Worker struct {
 requests chan Request // work to do (a buffered channel)
 pending int // count of pending tasks
 index int // index in the heap
}

Friday, May 21, 2010

Use the heap to maintain balance

42

The implementation of dispatch and completed is easy:
// Send Request to worker
func (b *Balancer) dispatch(req Request) {
 w := heap.Pop(&b.pool).(*Worker) // least loaded worker...
 w.requests <- req // ...is assigned the task
 w.pending++ // one more in its queue
 heap.Push(&b.pool, w) // put it back in the heap
}

// Job is complete; update heap
func (b *Balancer) completed(w *Worker) {
	 w.pending-- // one fewer in its queue
	 heap.Remove(&b.pool, w.index) // remove it from heap
	 heap.Push(&b.pool, w) // put it back where it belongs
}

Channels are first-class values. We've built a heap of channels
to multiplex and load balance.

Friday, May 21, 2010

Friday, May 21, 2010

Demo

Friday, May 21, 2010

Discussion

44

Every operation blocks, yet this system is highly concurrent.
The combination of communication and synchronization is a
powerful tool.

{Closure, channel} pairs are a nice way to pass work around.
The closure says what to do; the channel lets the answer flow
directly back to the requester.

Channels can be part of other data structures and can be
passed between goroutines.

With very little work, you could use network channels or RPCs
to make this a distributed, networked load balancer. (Although
closures don't work across the network, RPCs help.)

Friday, May 21, 2010

Friday, May 21, 2010

Conclusion

Friday, May 21, 2010

Go is different

• Objects are not always classes
– Inheritance is not the only way to structure a program

• You don't need to specify everything in advance
– (And you shouldn't need to anyway)
– Implicitly satisfying behavior leads to pleasant surprises

• Concurrency is not just parallelism
– But it is a great way to structure software

46

Friday, May 21, 2010

Go can make programming very productive:
- any type can be given methods, which opens up interesting
design possibilities.
- most of the bookkeeping of type-driven programming is
done automatically.
- the structuring power of concurrent programming leads
easily to correct, scalable server software.

Such properties make Go programs more malleable, more
adaptable, less brittle.

More at http://golang.org

Go is more productive

47

Friday, May 21, 2010

http://golang.org
http://golang.org

Go comes with T-shirts, tattoos and stickers.

Go is more fun

48

Friday, May 21, 2010

Live waving

49

Please ask questions about this session on Google Wave:

http://bit.ly/go2010io

More about Go at http://golang.org

Friday, May 21, 2010

http://bit.ly/bz3Xu0
http://bit.ly/bz3Xu0
http://golang.org
http://golang.org

Friday, May 21, 2010

