
http://golang.org
Monday, October 18, 2010

http://golang.org
http://golang.org

http://golang.org

The Expressiveness of Go
Rob Pike
JAOO
Oct 5, 2010

Monday, October 18, 2010

http://golang.org
http://golang.org

Who

2

Monday, October 18, 2010

Team

3

Russ Cox
Robert Griesemer
Rob Pike
Ian Taylor
Ken Thompson

plus David Symonds, Nigel Tao, Andrew Gerrand, Stephen
Ma, and others,

plus many contributions from the open source community.

Monday, October 18, 2010

Why

4

Why a new language?

Monday, October 18, 2010

Why Go?

5

A response to Google’s internal needs:
 - efficient large scale programming
 - speed of compilation
 - distributed systems
 - multicore, networked hardware

And a reaction to: “speed and safety or ease of use; pick one.”
 - complexity, weight, noise (C++, Java)
 vs.
 - no static checking (JavaScript, Python)

Go is statically typed and compiled, like C++ or Java (with no
VM), but in many ways feels as lightweight and dynamic as
JavaScript or Python.

Monday, October 18, 2010

The surprise

6

It turned out to be a nice general purpose language.

That was unexpected.

The most productive language I’ve ever used.
And some people agree.

Monday, October 18, 2010

Acceptance

7

Go was the 2009 TIOBE "Language of the year" two months
after it was released and it won an InfoWorld BOSSIE award.

Monday, October 18, 2010

Why the success?

8

This acceptance was a pleasant surprise.

But in retrospect, the way we approached the design was
important to the expressiveness and productivity of Go.

Monday, October 18, 2010

Principles

9

The axioms of Go’s design

Monday, October 18, 2010

Principles

10

Go is:

Simple
- concepts are easy to understand
 - (the implementation might still be sophisticated)

Orthogonal
- concepts mix cleanly
- easy to understand and predict what happens

Succinct
 - no need to predeclare every intention
Safe
 - misbehavior should be detected

These combine to give expressiveness.

Monday, October 18, 2010

Respect

11

Go trusts the programmer to write down what is meant.

In turn, Go tries to respect the programmer's intentions.

It's possible to be safe and fun.

There's a difference between seat belts and training wheels.

Monday, October 18, 2010

Simplicity

12

Number of keywords is an approximate measure of complexity.

C (K&R) K&R 32
C++ 1991 48
Java 3rd edition 50
C# 2010 77
C++0x 2010 72+11*
JavaScript ECMA-262 26+16*
Python 2.7 31
Pascal ISO 35
Modula-2 1980 40
Oberon 1990 32
Go 2010 25

* extra count is for reserved words and alternate spellings

Monday, October 18, 2010

An example

13

A complete (if simple) web server

Monday, October 18, 2010

Hello, world 2.0

14

Serving http://localhost:8080/world:

package main

import (
 "fmt"
 "http"
)

func handler(c *http.Conn, r *http.Request) {
 fmt.Fprintf(c, "Hello, %s.", r.URL.Path[1:])
}

func main() {
 http.ListenAndServe(":8080",
 http.HandlerFunc(handler))
}

Monday, October 18, 2010

Stories

15

A few design tales that illustrate how the principles play out.
Not close to a complete tour of Go.

Monday, October 18, 2010

Basics

16

Some fundamentals

Monday, October 18, 2010

Starting points

17

Go started with a few important simplifications relative to C/C++,
informed by our experience with those languages:
There are pointers but no pointer arithmetic
 - pointers are important to performance, pointer arithmetic not.
 - although it's OK to point inside a struct.
 - important to control layout of memory, avoid allocation

Increment/decrement (p++) is a statement, not expression.
 - no confusion about order of evaluation
Addresses last as long as they are needed.
 - take the address of a local variable, the implementation
 guarantees the memory survives while it's referenced.
No implicit numerical conversions (float to int, etc.).
 - C's "usual arithmetic conversions" are a minefield.

Monday, October 18, 2010

Constants are ideal

18

Implicit conversions often involve constants (sin(Pi/4)), but
Go mitigates the issue by having nicer constants.

Constants are "ideal numbers": no size or sign, hence no L
or U or UL endings.
 077 // octal
 0xFEEDBEEEEEEEEEEEEEEEEEEEEF // hexadecimal
 1 << 100

They are just numbers that can be assigned to variables; no
conversions necessary. A typed element in the expression
sets the true type of the constant. Here 1e9 becomes int64.
 seconds := time.Nanoseconds()/1e9

Monday, October 18, 2010

High precision constants

19

Arithmetic with constants is high precision. Only when
assigned to a variable are they rounded or truncated to fit.

 const Ln2= 0.6931471805599453094172321214581\
 76568075500134360255254120680009
 const Log2E= 1/Ln2 // accurate reciprocal
 var x float64 = Log2E

The value assigned to x will be as precise as possible in a
64-bit floating point number.

Simple, clear model. Simple constant syntax. Constants
orthogonal (nearly) to type system.

Monday, October 18, 2010

Types and data

20

Structs, methods, and interfaces

Monday, October 18, 2010

Structs

21

Structs describe (and control) the layout of data.
Some early proposals included methods in the struct, but
that idea was dropped. Instead methods are declared like
ordinary functions, outside the type, and with a "receiver".

 type Point struct { x, y float }

 func (p Point) Abs() float {
 return math.Sqrt(p.x*p.x + p.y*p.y)
 }

The (p Point) declares the receiver (no automatic "this"
variable; also notice p is not a pointer, although it could be.)

Methods are not mixed with the data definition.
They are orthogonal to types.

Monday, October 18, 2010

Methods are orthogonal to types

22

Orthogonality of methods allows any type to have them.
 type Vector []float
 func (v Vector) Abs() float {
 sumOfSquares := 0.0
 for i := range v {
 sumOfSquares += v[i]*v[i]
 }
 return math.Sqrt(sumOfSquares)
 }

 It also allows receivers to be values or pointers:
 func (p *Point) Scale(ratio float) {
 p.x, p.y = ratio*p.x, ratio*p.y
 }
Orthogonality leads to generality.

Monday, October 18, 2010

Interfaces

23

Interfaces are just sets of methods; work for any type.
 type Abser interface {
 Abs() float
 }

 var a Abser
 a = Point{3, 4}
 print(a.Abs())
 a = Vector{1, 2, 3, 4}
 print(a.Abs())

Interfaces are satisfied implicitly. Point and Vector do not
declare that they implement Abser, they just do.

@mjmoriarity: The way Go handles interfaces is the way I wish every language
handled them.

Monday, October 18, 2010

Interfaces are abstract, other types are concrete

24

In some of our early proposals, interfaces could contain data,
but this conflated representation and behavior.
Made them distinct:
 - concrete type such as structs define data
 - interfaces define behavior

As with methods, now anything can satisfy an interface.

 type Value float // basic type
 func (v Value) Abs() float {
 if v < 0 { v = -v }
 return float(v)
 }

 a = Value(-27)
 print(a.Abs())

Monday, October 18, 2010

Interfaces are satisfied implicitly

25

Point and Vector satisfied Abser implicitly; other types
might too. A type satisfies an interface simply by
implementing its methods. There is no "implements"
declaration; interfaces are satisfied implicitly.

It's a form of duck typing, but (usually) checkable at compile
time. It's also another form of orthogonality.

An object can (and usually does) satisfy many interfaces
simultaneously. For instance, Point and Vector satisfy
Abser and also the empty interface: interface{}, which is
satisfied by any value (analogous to C++ void* or Java
Object)

In Go, interfaces are usually one or two (or zero) methods.

Monday, October 18, 2010

Reader

26

 type Reader interface {
 Read(p []byte) (n int, err os.Error) // two return vals
 }
 // And similarly for Writer

Anything with a Read method implements Reader.
 - Sources: files, buffers, network connections, pipes
 - Filters: buffers, checksums, decompressors, decrypters
JPEG decoder takes a Reader, so it can decode from disk,
network, gzipped HTTP,

Buffering just wraps a Reader:
 var bufferedInput Reader = bufio.NewReader(os.Stdin)

Fprintf uses a Writer:
 func Fprintf(w Writer, fmt string, a ...interface{})

Monday, October 18, 2010

Interfaces enable retrofitting

27

Had an existing RPC implementation that used custom wire
format. Changed to an interface:
 type Encoding interface {
 ReadRequestHeader(*Request) os.Error
 ReadRequestBody(interface{}) os.Error
 WriteResponse(*Response, interface{}) os.Error
 Close() os.Error
 }

Two functions (send, receive) changed signature. Before:
 func sendResponse(sending *sync.Mutex, req *Request,
 reply interface{}, enc *gob.Encoder, err string)

After (and similarly for receiving):
 func sendResponse(sending *sync.Mutex, req *Request,
 reply interface{}, enc Encoding, err string)

That is almost the whole change to the RPC implementation.

Monday, October 18, 2010

Post facto abstraction

28

We saw an opportunity: RPC needed only Encode and
Decode methods. Put those in an interface and you've
abstracted the codec.

Total time: 20 minutes, including writing and testing the
JSON implementation of the interface.

(We also wrote a trivial wrapper to adapt the existing codec
for the new rpc.Encoding interface.)

In Java, RPC would be refactored into a half-abstract class,
subclassed to create JsonRPC and StandardRPC. You'd have
to plan ahead.

In Go it's simpler and the design adapts through experience.

Monday, October 18, 2010

Principles redux

29

Types and data examples:

Simple
- interfaces are just method sets

Orthogonal
- representation (data) and behavior (methods)
 are independent
- empty interface can represent any value

Succinct
 - no implements declarations; interfaces just satisfy
Safe
 - static type checking

Expressiveness: implicit satisfaction lets pieces fit together
seamlessly.

Monday, October 18, 2010

Names

30

Visibility

Monday, October 18, 2010

Visibility

31

With methods not declared as part of the type definition, how
to say private/public?
Long design debate with several suggestions:
 - placement in the file
 - export keyword
 - name marker (e.g. Point{ +x,+y int })

Resolution (anguished decision): Don't make it part of the
declaration, make it part of the name. After all, that's what
you see whenever you use it!
Case of first character determines visibility outside package:
 ThisNameIsPublic
 thisOneIsNot

Monday, October 18, 2010

Visibility is orthogonal to type

32

One of the best decisions in the language, yet really hard to
make!

Lose control over how to use case, e.g. can't use it to
distinguish Types from variables.

In return, though:

 - extremely simple, easy rule to understand
 - consequences clear
 - see a variable, can see whether it's public
 without going to the declaration
 - can make any type, variable, or constant public or not
 with the same mechanism

Orthogonality again!

Monday, October 18, 2010

Concurrency and closures

33

Goroutines, channels, stacks and closures

Monday, October 18, 2010

The model

34

Go has native support for concurrent operations in the CSP
tradition.

Two styles of concurrency exist: deterministic (well-defined
ordering) and non-deterministic (mutual exclusion but order
undefined).

Go's goroutines and channels promote deterministic
concurrency (e.g. channels with one sender, one receiver),
which is easier to reason about.

Simpler for the programmer.

Monday, October 18, 2010

Go concurrency basics

35

Start a goroutine:

 go f()

Channel send (arrow points in direction of flow):

 ch <- value

Channel receive:

value = <-ch

Channels are unbuffered by default, which combines
synchronization with communication.

Monday, October 18, 2010

A simple worker pool

36

A unit of work:
type Work struct { x, y, z int }

A worker task:
func worker(in <-chan *Work, out chan <- *Work) {
 for w := range in {
 w.z = w.x * w.y
 out <- w
 }
}

Driver:
func Run() {
 in, out := make(chan *Work), make(chan *Work)
 for i := 0; i < 10; i++ { go worker(in, out) }
 go sendLotsOfWork(in)
 receiveLotsOfResults(out)
}

No low-level synchronization needed.
Monday, October 18, 2010

Secondary support

37

To make concurrency feasible, need several things:

 - language support (axiomatic)
 - garbage collection (near axiomatic)

To make it good, you need:

 - stack management
 - closures

Monday, October 18, 2010

Stacks

38

Goroutines have "segmented stacks":

 go f()

starts f() executing concurrently on a new stack.

Stack grows and shrinks as needed.

No programmer concern about stack size.
No possibility for stack overflow.

A couple of instructions of overhead on each function call, a
huge improvement in simplicity and expressiveness.

Concurrent execution is orthogonal to everything else.

Monday, October 18, 2010

Launching a goroutine

39

Start a service, return a channel to communicate with it:

 func (s *Service) Start() chan request {
 ch := make(chan request)
 go s.serve(ch) // s.serve runs concurrently
 return ch // returns immediately
 }

A common pattern, given channels as first-class values.

Monday, October 18, 2010

Closures

40

Closures are just local functions

 func Compose(f, g func(x float) float)
 func(x float) float {
 return func(x float) float {
 return f(g(x))
 }
 }

 func main() {
 print(Compose(sin, cos)(0.5))
 }

Fit easily into implementation since local variables already
move to heap when necessary.

Monday, October 18, 2010

Closures and concurrency

41

Query servers in replicated database, return first response.

 func Query(conns []Conn, query string) Result {
 ch := make(chan Result, 1) // buffer of 1 item
 for _, conn := range conns {
 go func(c Conn) {
 _ = ch <- c.DoQuery(query)
 }(conn)
 }
 return <-ch
 }

Monday, October 18, 2010

Principles redux

42

Concurrency and closure examples:
Simple

- stacks just work; goroutines too cheap to meter
Orthogonal

- concurrency orthogonal to rest of language
- orthogonality of functions make closures easy

Succinct
 - go f()
 - closure syntax clear

Safe
 - no stack overflows
 - garbage collection avoids many concurrency problems

Expressiveness: complex behaviors easily expressed.

Monday, October 18, 2010

Conclusion

43

Expressiveness comes from orthogonal composition of
simple concepts.

Monday, October 18, 2010

Conclusion

44

Go is not a small language (goroutines, channels, garbage
collection, methods, interfaces, closures, ...) but it is an
expressive and comprehensible one.

Expressiveness comes from orthogonal composition of
constructs.

Comprehensibility comes from simple constructs that interact
in easily understood ways.

Build a language from simple orthogonal constructs and you
have a language that will be easy and productive to use.

The surprises you discover will be pleasant ones.

Monday, October 18, 2010

Implementation

45

The language is designed and usable. Two compiler suites:
Gc, written in C, generates OK code very quickly.

- unusual design based on the Plan 9 compiler suite
Gccgo, written in C++, generates good code more slowly

- uses GCC's code generator and tools

Libraries good and growing, but some pieces are still
preliminary.

Garbage collector works fine (simple mark and sweep) but is
being rewritten for more concurrency, less latency.

Available for Linux etc., Mac OS X. Windows port working.

All available as open source; see http://golang.org.

Monday, October 18, 2010

Try it out

46

This is a true open source project.

Much more information at

 http://golang.org

including full source, documentation, and a playground that
lets you try Go code right from the browser.

Monday, October 18, 2010

http://golang.org
Monday, October 18, 2010

http://golang.org
http://golang.org

http://golang.org

The Expressiveness of Go
Rob Pike
JAOO
Oct 5, 2010

Monday, October 18, 2010

http://golang.org
http://golang.org

