
The Go Programming Language

Rob Pike
golang.org

Oct 30, 2009

http://golang.org

Monday, November 2, 2009

http://golang.org
http://golang.org

Go

New

Experimental

Concurrent

Garbage-collected

Systems

Language

Monday, November 2, 2009

Hello, world

package main

import "fmt"

func main() {

 fmt.Printf("Hello, 世界\n");
}

Monday, November 2, 2009

Who

Robert Griesemer, Ken Thompson, and Rob Pike
started the project in late 2007.

By mid 2008 the language was mostly designed
and the implementation (compiler, run-time)
starting to work.

Ian Lance Taylor and Russ Cox joined in 2008.

Lots of help from many others.

Monday, November 2, 2009

Why

Go fast!

Make programming fun again.

Monday, November 2, 2009

Our changing world

No new major systems language in a decade.

But much has changed:

- sprawling libraries & dependency chains
- dominance of networking
- client/server focus
- massive clusters
- the rise of multi-core CPUs

Major systems languages were not designed
with all these factors in mind.

Monday, November 2, 2009

Construction speed

It takes too long to build software.

The tools are slow and are getting slower.

Dependencies are uncontrolled.

Machines have stopped getting faster.

Yet software still grows and grows.

If we stay as we are, before long software
construction will be unbearably slow.

Monday, November 2, 2009

Type system tyranny

Robert Griesemer: “Clumsy type systems drive
people to dynamically typed languages.”

Clunky typing:
Taints good idea with bad implementation.
Makes programming harder (think of C's const:
well-intentioned but awkward in practice).

Hierarchy is too stringent:
Types in large programs do not easily fall into
hierarchies.
Programmers spend too much time deciding
tree structure and rearranging inheritance.

You can be productive or safe, not both.

Monday, November 2, 2009

Why a new language?

These problems are endemic and linguistic.

New libraries won’t help. (Adding anything is
going in the wrong direction.)

Need to start over, thinking about the way
programs are written and constructed.

Monday, November 2, 2009

A New Language

Monday, November 2, 2009

Goals

The efficiency of a statically-typed compiled language
with the ease of programming of a dynamic language.

Safety: type-safe and memory-safe.

Good support for concurrency and communication.

Efficient, latency-free garbage collection.

High-speed compilation.

Monday, November 2, 2009

As xkcd observes...

http://xkcd.com/303/

The image is licensed under a Creative Commons Attribution-NonCommercial 2.5 License.

Monday, November 2, 2009

http://xkcd.com/303/
http://xkcd.com/303/
http://creativecommons.org/licenses/by-nc/2.5/
http://creativecommons.org/licenses/by-nc/2.5/

Compilation demo

Monday, November 2, 2009

Design principles
Keep concepts orthogonal.

A few orthogonal features work better than a lot
of overlapping ones.

Keep the grammar regular and simple.
Few keywords, parsable without a symbol table.

Reduce typing. Let the language work things out.
No stuttering; don't want to see
foo.Foo *myFoo = new foo.Foo(foo.FOO_INIT)

Avoid bookkeeping.
But keep things safe.

Reduce typing. Keep the type system clear.
No type hierarchy. Too clumsy to write code by
constructing type hierarchies.
It can still be object-oriented.

Monday, November 2, 2009

The big picture

Fundamentals:
Clean, concise syntax.
Lightweight type system.
No implicit conversions: keep things explicit.
Untyped unsized constants: no more 0x80ULL.
Strict separation of interface and implementation.

Run-time:
Garbage collection.
Strings, maps, communication channels.
Concurrency.

Package model:
Explicit dependencies to enable faster builds.

Monday, November 2, 2009

New approach: Dependencies

Construction speed depends on managing
dependencies.

Explicit dependencies in source allow:
- fast compilation
- fast linking

The Go compiler pulls transitive dependency type
info from the object file - but only what it needs.

If A.go depends on B.go depends on C.go:
- compile C.go, B.go, then A.go.
- to compile A.go, compiler reads B.o not C.o.

At scale, this can be a huge speedup.

Monday, November 2, 2009

New approach: Concurrency

Go provides a way to write systems and servers
as concurrent, garbage-collected processes
(goroutines) with support from the language and
run-time.

Language takes care of goroutine management,
memory management.

Growing stacks, multiplexing of goroutines onto
threads is done automatically.

Concurrency is hard without garbage collection.

Garbage collection is hard without the right
language.

Monday, November 2, 2009

... quickly

Monday, November 2, 2009

Basics

const N = 1024 // just a number

const str = “this is a 日本語 string\n”
var x, y *float

var ch = '\u1234'

/* Define and use a type, T. */

type T struct { a, b int }

var t0 *T = new(T);

t1 := new(T); // type taken from expr

// Control structures:

// (no parens, always braces)

if len(str) > 0 { ch = str[0] }

Monday, November 2, 2009

Program structure

package main

import "os"

import "flag"

var nFlag = flag.Bool("n", false, `no \n`)

func main() {

! flag.Parse();

! s := "";

! for i := 0; i < flag.NArg(); i++ {

! ! if i > 0 { s += " " }

! ! s += flag.Arg(i)

! }

! if !*nFlag { s += "\n" }

! os.Stdout.WriteString(s);

}

Monday, November 2, 2009

Constants
type TZ int

const (

 UTC TZ = 0*60*60;

 EST TZ = -5*60*60; // and so on

)

// iota enumerates:

const (

 bit0, mask0 uint32 = 1<<iota, 1<<iota - 1;

 bit1, mask1 uint32 = 1<<iota, 1<<iota - 1;

 bit2, mask2; // implicitly same text

)

// high precision:

const Ln2= 0.693147180559945309417232121458\

 176568075500134360255254120680009

const Log2E= 1/Ln2 // precise reciprocal

Monday, November 2, 2009

Values and types

weekend := []string{ "Saturday", "Sunday" }

timeZones := map[string]TZ {

 "UTC":UTC, "EST":EST, "CST":CST, //...

}

func add(a, b int) int { return a+b }

type Op func (int, int) int

type RPC struct {

a, b int;

op Op;

result *int;

}

rpc := RPC{ 1, 2, add, new(int) };

Monday, November 2, 2009

Methods
type Point struct {

 X, Y float // Upper case means exported

}

func (p *Point) Scale(s float) {

 p.X *= s; p.Y *= s; // p is explicit

}

func (p *Point) Abs() float {

 return math.Sqrt(p.X*p.X + p.Y*p.Y)

}

x := &Point{ 3, 4 };

x.Scale(5);

Monday, November 2, 2009

Methods for any user type
package main

import "fmt"

type TZ int

const (

 HOUR TZ = 60*60; UTC TZ = 0*HOUR; EST TZ = -5*HOUR; //...

)

var timeZones = map[string]TZ { "UTC": UTC, "EST": EST, }

func (tz TZ) String() string { // Method on TZ (not ptr)

 for name, zone := range timeZones {

 if tz == zone { return name }

 }

 return fmt.Sprintf("%+d:%02d", tz/3600, (tz%3600)/60);

}

func main() {

 fmt.Println(EST); // Print* know about method String()

 fmt.Println(5*HOUR/2);

}

// Output (two lines) EST +2:30

Monday, November 2, 2009

Interfaces
type Magnitude interface {

 Abs() float; // among other things

}

var m Magnitude;

m = x; // x is type *Point, has method Abs()

mag := m.Abs();

type Point3 struct { X, Y, Z float }

func (p *Point3) Abs() float {

 return math.Sqrt(p.X*p.X + p.Y*p.Y + p.Z*p.Z)

}

m = &Point3{ 3, 4, 5 };

mag += m.Abs();

type Polar struct { R, ! float }

func (p Polar) Abs() float { return p.R }

m = Polar{ 2.0, PI/2 };

mag += m.Abs();
Monday, November 2, 2009

Interfaces for generality
Package io defines the Writer interface:
 type Writer interface {

 Write(p []byte) (n int, err os.Error)

 }

Any type with that method can be written to: files,
pipes, network connections, buffers, ... On the
other hand, anything that needs to write can just
specify io.Writer.

For instance, fmt.Fprintf takes io.Writer as first
argument.

For instance, bufio.NewWriter takes an
io.Writer in, buffers it, satisfies io.Writer out.

And so on...

Monday, November 2, 2009

Putting it together
package main

import (

 "bufio";

 "fmt";

 "os";

)

func main() {

 // unbuffered

 fmt.Fprintf(os.Stdout, "%s, ", "hello");

 // buffered: os.Stdout implements io.Writer

 buf := bufio.NewWriter(os.Stdout);

 // and now so does buf.

 fmt.Fprintf(buf, "%s\n", "world!");

 buf.Flush();

}

Monday, November 2, 2009

Communication channels

var c chan string;

c = make(chan string);

c <- "Hello"; // infix send

// in a different goroutine

greeting := <-c; // prefix receive

cc := new(chan chan string);

cc <- c; // handing off a capability

Monday, November 2, 2009

Goroutines

x := longCalculation(17); // runs too long

c := make(chan int);

func wrapper(a int, c chan int) {

 result := longCalculation(a);

 c <- result;

}

go wrapper(17, c);

// do something for a while; then...

x := <-c;

Monday, November 2, 2009

A multiplexed server
type Request struct {

 a, b int;

 replyc chan int; // reply channel inside the Request

}

type binOp func(a, b int) int

func run(op binOp, req *request) {

 req.replyc <- op(req.a, req.b)

}

func server(op binOp, service chan *request) {

 for {

 req := <-service; // requests arrive here

 go run(op, req); // don't wait for op

 }

}

func StartServer(op binOp) chan *request {

 reqChan := make(chan *request);

 go server(op, reqChan);

 return reqChan;

}

Monday, November 2, 2009

The client
// Start server; receive a channel on which

// to send requests.

server := StartServer(

 func(a, b int) int {return a+b});

// Create requests

req1 := &Request{23,45, make(chan int)};

req2 := &Request{-17,1<<4, make(chan int)};

// Send them in arbitrary order

server <- req1; server <- req2;

// Wait for the answers in arbitrary order

fmt.Printf("Answer2: %d\n", <-req2.replyc);

fmt.Printf("Answer1: %d\n", <-req1.replyc);

Monday, November 2, 2009

Select
A select is like a switch statement in which the
cases are communications. A simple example uses a
second channel to tear down the server.

func server(op binOp, service chan *request,

 quit chan bool) {

 for {

 select {

 case req := <-service:

 go run(op, req); // don't wait

 case <-quit:

 return;

 }

 }

}

Monday, November 2, 2009

And more...

No time to talk about:

 - package construction
 - initialization
 - reflection
 - dynamic types
 - embedding
 - iterators
 - testing

Monday, November 2, 2009

Chaining

package main

import ("flag"; "fmt")

var ngoroutine = flag.Int("n", 100000, "how many")

func f(left, right chan int) { left <- 1 + <-right }

func main() {

 flag.Parse();

 leftmost := make(chan int);

 var left, right chan int = nil, leftmost;

 for i := 0; i < *ngoroutine; i++ {

 left, right = right, make(chan int);

 go f(left, right);

 }

 right <- 0; // bang!

 x := <-leftmost; // wait for completion

 fmt.Println(x); // 100000

}

Monday, November 2, 2009

Concurrency demo

Monday, November 2, 2009

Status

Monday, November 2, 2009

Compilers

Two variants:
6g/8g/5g (Ken Thompson)

more experimental.
generates OK code very quickly.
not GCC-linkable but has FFI support.

gccgo (Ian Taylor)
Go front end for GCC.
generates good code not as quickly.

Both support 32- and 64-bit x86, plus ARM.

Performance: typically within 10-20% of C.

Monday, November 2, 2009

Run-time

Run-time handles memory allocation and
collection, stack handling, goroutines,
channels, slices, maps, reflection, and more.

Solid but improving.

6g has good goroutine support, muxes them
onto threads, implements segmented stacks.

Gccgo is (for a little while yet) lacking
segmented stacks, allocates one goroutine
per thread.

Monday, November 2, 2009

Garbage collector

6g has a simple but effective mark-and-sweep
collector. Work is underway to develop the
ideas in IBM's Recycler garbage collector* to
build a very efficient, low-latency concurrent
collector.

Gccgo at the moment has no collector; the new
collector is being developed for both compilers.

* http://www.research.ibm.com/people/d/dfb/papers.html

Monday, November 2, 2009

http://www.research.ibm.com/people/d/dfb/papers.html
http://www.research.ibm.com/people/d/dfb/papers.html

Libraries

Lots of libraries but plenty still needed.
Some (e.g. regexp) work fine but are too simple.

OS, I/O, files
math (sin(x) etc.)
strings, Unicode, regular expressions
reflection
command-line flags, logging
hashes, crypto
testing (plus testing tool, gotest)
networking, HTTP, RPC
HTML (and more general) templates

...and lots more.

Monday, November 2, 2009

Godoc and Gofmt

Godoc:
documentation server, analogous to javadoc
but easier on the programmer. Can run yourself
but live at:

http://golang.org/ (top-level; serves all docs)
http://golang.org/pkg/ (package docs)
http://golang.org/src/ (source code)

Gofmt:
pretty-printer; all code in the repository has
been formatted by it.

Monday, November 2, 2009

http://golang.org/
http://golang.org/
http://golang.org/pkg/
http://golang.org/pkg/
http://golang.org/src/
http://golang.org/src/

Debugger

A custom debugger is underway; not quite ready
yet (but close).

Gccgo users can invoke gdb but the symbol table
makes it look like C and there's no knowledge of
the run-time.

Monday, November 2, 2009

What about generics?

Go does not have generic types, etc.

We don't yet understand the right semantics for
them given Go's type system but we're still thinking.
They will add complexity so must be done right.

Generics would definitely be useful, though maps,
slices, and interfaces address many common use
cases.

Collections can be built using the empty interface,
at the cost of manual unboxing.

In short: not yet.

Monday, November 2, 2009

What about ...?

Your favorite feature may be missing (or present in a
different form, such as enum vs. iota).

Perhaps it's not a good fit for the kind of language
Go aims to be or contradicts Go's design goals.

Perhaps it hasn't been a priority for us while we
explore other areas of the language.

We expect people to notice missing features. Don't
let that stop you from exploring the features that Go
does have.

For more info, there's a language design FAQ on the
web site.

Monday, November 2, 2009

Conclusion

Monday, November 2, 2009

A call for action

It's early yet but promising.
A very comfortable and productive language.

Lots of documents on the web:
specification, tutorial, "Effective Go", FAQs, more

Full open-source implementations.

Want to try it?
Want to help?
Want to build libraries or tools?

http://golang.org

Monday, November 2, 2009

http://golang.org
http://golang.org

The Go Programming Language

Rob Pike
golang.org

Oct 30, 2009

http://golang.org

Monday, November 2, 2009

http://golang.org
http://golang.org

